Skip to main content

sqldf for pandas

Project description

pandasql allows you to query pandas DataFrames using SQL syntax. It works similarly to sqldf in R. pandasql seeks to provide a more familiar way of manipulating and cleaning data for people new to Python or pandas.

Installation

$ pip install -U pandasql

Basics

The main function used in pandasql is sqldf. sqldf accepts 2 parametrs - a sql query string - an set of session/environment variables (locals() or globals())

Specifying locals() or globals() can get tedious. You can defined a short helper function to fix this.

from pandasql import sqldf
pysqldf = lambda q: sqldf(q, globals())

Querying

pandasql uses SQLite syntax. Any pandas dataframes will be automatically detected by pandasql. You can query them as you would any regular SQL table.

$ python
>>> from pandasql import sqldf, load_meat, load_births
>>> pysqldf = lambda q: sqldf(q, globals())
>>> meat = load_meat()
>>> births = load_births()
>>> print pysqldf("SELECT * FROM meat LIMIT 10;").head()
                  date  beef  veal  pork  lamb_and_mutton broilers other_chicken turkey
0  1944-01-01 00:00:00   751    85  1280               89     None          None   None
1  1944-02-01 00:00:00   713    77  1169               72     None          None   None
2  1944-03-01 00:00:00   741    90  1128               75     None          None   None
3  1944-04-01 00:00:00   650    89   978               66     None          None   None
4  1944-05-01 00:00:00   681   106  1029               78     None          None   None

joins and aggregations are also supported

>>> q = """SELECT
        m.date, m.beef, b.births
     FROM
        meats m
     INNER JOIN
        births b
           ON m.date = b.date;"""
>>> joined = pyqldf(q)
>>> print joined.head()
                    date    beef  births
403  2012-07-01 00:00:00  2200.8  368450
404  2012-08-01 00:00:00  2367.5  359554
405  2012-09-01 00:00:00  2016.0  361922
406  2012-10-01 00:00:00  2343.7  347625
407  2012-11-01 00:00:00  2206.6  320195

>>> q = "select
           strftime('%Y', date) as year
           , SUM(beef) as beef_total
           FROM
              meat
           GROUP BY
              year;"
>>> print pysqldf(q).head()
   year  beef_total
0  1944        8801
1  1945        9936
2  1946        9010
3  1947       10096
4  1948        8766

More information and code samples available in the examples folder or on our blog.

Analytics

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandasql-0.7.3.tar.gz (26.7 kB view details)

Uploaded Source

Built Distribution

pandasql-0.7.3-py2.7.egg (36.3 kB view details)

Uploaded Source

File details

Details for the file pandasql-0.7.3.tar.gz.

File metadata

  • Download URL: pandasql-0.7.3.tar.gz
  • Upload date:
  • Size: 26.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandasql-0.7.3.tar.gz
Algorithm Hash digest
SHA256 1eb248869086435a7d85281ebd9fe525d69d9d954a0dceb854f71a8d0fd8de69
MD5 6bfca10a075d587d0da0c3ada496d613
BLAKE2b-256 6bc4ee4096ffa2eeeca0c749b26f0371bd26aa5c8b611c43de99a4f86d3de0a7

See more details on using hashes here.

File details

Details for the file pandasql-0.7.3-py2.7.egg.

File metadata

  • Download URL: pandasql-0.7.3-py2.7.egg
  • Upload date:
  • Size: 36.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandasql-0.7.3-py2.7.egg
Algorithm Hash digest
SHA256 75f08c5cdfd19f61ceed8c38a6ac138c353776ad3be8e015edcee977c2299aad
MD5 1a87b7250e14c52153be1f5d4464ca8f
BLAKE2b-256 c0101b2b422d6b3fc34a6b06bfcc41b954f7a71005d1318ed59e123d5ae70d5a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page