Skip to main content

sqldf for pandas

Project description

pandasql
========

<code>pandasql</code> allows you to query <code>pandas</code> DataFrames using SQL syntax. It works similarly to <code>sqldf</code> in R. <code>pandasql</code> seeks to provide a more familiar way of manipulating and cleaning data for people new to Python or <code>pandas</code>.

####Installation
$ pip install -U pandasql

####Bascis
The main function used in pandasql is <code>sqldf</code>. sqldf accepts 2 parametrs
- a sql query string
- an set of session/environment variables (<code>locals()</code> or <code>globals()</code>)

from pandasql import sqldf

Specifying <code>locals()</code> or <code>globals()</code> can get tedious. You can defined a short helper function to fix this.

pysqldf = lambda q: sqldf(q, globals())

####Querying
<code>pandasql</code> uses <a href="http://www.sqlite.org/lang.html">SQLite syntax</a>. Any <code>pandas</code> dataframes will be automatically detected by pandasql. You can query them as you would any regular SQL table.


>>> from pandasql import sqldf, load_meat, load_births
>>> pysqldf = lambda q: sqldf(q, globals())
>>> meat = load_meat()
>>> births = load_births()
>>> print pysqldf("SELECT * FROM meat LIMIT 10;").head()
date beef veal pork lamb_and_mutton broilers other_chicken turkey
0 1944-01-01 00:00:00 751 85 1280 89 None None None
1 1944-02-01 00:00:00 713 77 1169 72 None None None
2 1944-03-01 00:00:00 741 90 1128 75 None None None
3 1944-04-01 00:00:00 650 89 978 66 None None None
4 1944-05-01 00:00:00 681 106 1029 78 None None None

joins and aggregations are also supported

>>> q = """SELECT
m.date, m.beef, b.births
FROM
meats m
INNER JOIN
births b
ON m.date = b.date;"""
>>> joined = pyqldf(q)
>>> print joined.head()
date beef births
403 2012-07-01 00:00:00 2200.8 368450
404 2012-08-01 00:00:00 2367.5 359554
405 2012-09-01 00:00:00 2016.0 361922
406 2012-10-01 00:00:00 2343.7 347625
407 2012-11-01 00:00:00 2206.6 320195

>>> q = "select
strftime('%Y', date) as year
, SUM(beef) as beef_total
FROM
meat
GROUP BY
year;"
>>> print pysqldf(q).head()
year beef_total
0 1944 8801
1 1945 9936
2 1946 9010
3 1947 10096
4 1948 8766

More information and code samples available in the [examples](https://github.com/yhat/pandasql/blob/master/examples/demo.py) folder or on [our blog](http://blog.yhathq.com/posts/pandasql-sql-for-pandas-dataframes.html).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandasql-0.2.1.tar.gz (22.6 kB view details)

Uploaded Source

Built Distribution

pandasql-0.2.1-py2.7.egg (25.7 kB view details)

Uploaded Egg

File details

Details for the file pandasql-0.2.1.tar.gz.

File metadata

  • Download URL: pandasql-0.2.1.tar.gz
  • Upload date:
  • Size: 22.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandasql-0.2.1.tar.gz
Algorithm Hash digest
SHA256 8e1ef1ade358efbfe239ef2e851da8cc49b65667d3acb5b52bc7e1bbabd2521b
MD5 3acb1cfba5ea377c97dab43309969a0a
BLAKE2b-256 740499be4e7d7ef59fd2d1742f821a9f69e8260e8c948f527fb94ed7fde471ff

See more details on using hashes here.

File details

Details for the file pandasql-0.2.1-py2.7.egg.

File metadata

  • Download URL: pandasql-0.2.1-py2.7.egg
  • Upload date:
  • Size: 25.7 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandasql-0.2.1-py2.7.egg
Algorithm Hash digest
SHA256 731eb96c8c6401eddf6f6a0e7ba3ac52907a1dabf2ba506dea42dfcbbc7c3ff8
MD5 9b8bd4d6ef467e432646e6e523832000
BLAKE2b-256 beffcab9a4e8e145f7d6317e4d92c2d76ef99b8ef269a92576159e55cbc17f5e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page