Skip to main content

sqldf for pandas

Project description

pandasql
========

pandasql allows you to query pandas DataFrames using SQL syntax. It works similarly to sqldf in R. pandasql seeks to provide a more familiar way of manipulating and cleaning data for people new to Python or pandas.

Installation
===========
.. code:: python
$ pip install -U pandasql

Bascis
===========
The main function used in pandasql is sqldf. sqldf accepts 2 parametrs
- a sql query string
- an set of session/environment variables (locals() or globals())

Specifying locals() or globals() can get tedious. You can defined a short helper function to fix this.

.. code:: python
from pandasql import sqldf
pysqldf = lambda q: sqldf(q, globals())

Querying
===========
pandasql uses <a href="http://www.sqlite.org/lang.html">SQLite syntax</a>. Any pandas dataframes will be automatically detected by pandasql. You can query them as you would any regular SQL table.

.. code:: python
>>> from pandasql import sqldf, load_meat, load_births
>>> pysqldf = lambda q: sqldf(q, globals())
>>> meat = load_meat()
>>> births = load_births()
>>> print pysqldf("SELECT * FROM meat LIMIT 10;").head()
date beef veal pork lamb_and_mutton broilers other_chicken turkey
0 1944-01-01 00:00:00 751 85 1280 89 None None None
1 1944-02-01 00:00:00 713 77 1169 72 None None None
2 1944-03-01 00:00:00 741 90 1128 75 None None None
3 1944-04-01 00:00:00 650 89 978 66 None None None
4 1944-05-01 00:00:00 681 106 1029 78 None None None

joins and aggregations are also supported

.. code:: python
>>> q = """SELECT
m.date, m.beef, b.births
FROM
meats m
INNER JOIN
births b
ON m.date = b.date;"""
>>> joined = pyqldf(q)
>>> print joined.head()
date beef births
403 2012-07-01 00:00:00 2200.8 368450
404 2012-08-01 00:00:00 2367.5 359554
405 2012-09-01 00:00:00 2016.0 361922
406 2012-10-01 00:00:00 2343.7 347625
407 2012-11-01 00:00:00 2206.6 320195

>>> q = "select
strftime('%Y', date) as year
, SUM(beef) as beef_total
FROM
meat
GROUP BY
year;"
>>> print pysqldf(q).head()
year beef_total
0 1944 8801
1 1945 9936
2 1946 9010
3 1947 10096
4 1948 8766

More information and code samples available in the [examples](https://github.com/yhat/pandasql/blob/master/examples/demo.py) folder or on [our blog](http://blog.yhathq.com/posts/pandasql-sql-for-pandas-dataframes.html).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandasql-0.3.1.tar.gz (23.3 kB view details)

Uploaded Source

Built Distribution

pandasql-0.3.1-py2.7.egg (26.9 kB view details)

Uploaded Egg

File details

Details for the file pandasql-0.3.1.tar.gz.

File metadata

  • Download URL: pandasql-0.3.1.tar.gz
  • Upload date:
  • Size: 23.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandasql-0.3.1.tar.gz
Algorithm Hash digest
SHA256 dcda76304ba08e719186d0c33e7a02115f4cbf8f708c38687a6e209d1b2166ce
MD5 87a52197d59f9b95195ba3463f50cf87
BLAKE2b-256 ac4f0c978cc7b5d460ff8796fc69893e2c60f6f70740edaba3519b103756c492

See more details on using hashes here.

File details

Details for the file pandasql-0.3.1-py2.7.egg.

File metadata

  • Download URL: pandasql-0.3.1-py2.7.egg
  • Upload date:
  • Size: 26.9 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandasql-0.3.1-py2.7.egg
Algorithm Hash digest
SHA256 9c0d3b2d78609a2ebb08b0689c5053d116b611c1cfed6fa320fb7f30dcf6f9d7
MD5 711b3ab305d91d9d290edf1abcd6946e
BLAKE2b-256 9239ce9d62391ebb7e4842ccbeec0d8c147b2236f7202659657723899b5eae2d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page