Skip to main content

sqldf for pandas

Project description

pandasql allows you to query pandas DataFrames using SQL syntax. It works similarly to sqldf in R. pandasql seeks to provide a more familiar way of manipulating and cleaning data for people new to Python or pandas.

Installation

$ pip install -U pandasql

Bascis

The main function used in pandasql is sqldf. sqldf accepts 2 parametrs - a sql query string - an set of session/environment variables (locals() or globals())

Specifying locals() or globals() can get tedious. You can defined a short helper function to fix this.

from pandasql import sqldf
pysqldf = lambda q: sqldf(q, globals())

Querying

pandasql uses SQLite syntax. Any pandas dataframes will be automatically detected by pandasql. You can query them as you would any regular SQL table.

$ python
>>> from pandasql import sqldf, load_meat, load_births
>>> pysqldf = lambda q: sqldf(q, globals())
>>> meat = load_meat()
>>> births = load_births()
>>> print pysqldf("SELECT * FROM meat LIMIT 10;").head()
                  date  beef  veal  pork  lamb_and_mutton broilers other_chicken turkey
0  1944-01-01 00:00:00   751    85  1280               89     None          None   None
1  1944-02-01 00:00:00   713    77  1169               72     None          None   None
2  1944-03-01 00:00:00   741    90  1128               75     None          None   None
3  1944-04-01 00:00:00   650    89   978               66     None          None   None
4  1944-05-01 00:00:00   681   106  1029               78     None          None   None

joins and aggregations are also supported

>>> q = """SELECT
        m.date, m.beef, b.births
     FROM
        meats m
     INNER JOIN
        births b
           ON m.date = b.date;"""
>>> joined = pyqldf(q)
>>> print joined.head()
                    date    beef  births
403  2012-07-01 00:00:00  2200.8  368450
404  2012-08-01 00:00:00  2367.5  359554
405  2012-09-01 00:00:00  2016.0  361922
406  2012-10-01 00:00:00  2343.7  347625
407  2012-11-01 00:00:00  2206.6  320195

>>> q = "select
           strftime('%Y', date) as year
           , SUM(beef) as beef_total
           FROM
              meat
           GROUP BY
              year;"
>>> print pysqldf(q).head()
   year  beef_total
0  1944        8801
1  1945        9936
2  1946        9010
3  1947       10096
4  1948        8766

More information and code samples available in the examples folder or on our blog.

Analytics

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandasql-0.4.2.tar.gz (24.3 kB view details)

Uploaded Source

Built Distribution

pandasql-0.4.2-py2.7.egg (27.3 kB view details)

Uploaded Egg

File details

Details for the file pandasql-0.4.2.tar.gz.

File metadata

  • Download URL: pandasql-0.4.2.tar.gz
  • Upload date:
  • Size: 24.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandasql-0.4.2.tar.gz
Algorithm Hash digest
SHA256 746d8eb0351204b375820a425d2c996bbbe23e929e76f5a636c7e5e41e5e2108
MD5 3ecfe5176c4b73747fcba925eefdc6cb
BLAKE2b-256 71e1db551a6319c95920b2fcf8755984e3d8b056f8fbec1f519490ab896b9f5a

See more details on using hashes here.

File details

Details for the file pandasql-0.4.2-py2.7.egg.

File metadata

  • Download URL: pandasql-0.4.2-py2.7.egg
  • Upload date:
  • Size: 27.3 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandasql-0.4.2-py2.7.egg
Algorithm Hash digest
SHA256 fff747cf936dad07c68996668c540919314dff7cb3f0a02e82b199f53756fc83
MD5 18e71d4217edb5322d7cf32c09e4ea2a
BLAKE2b-256 98978ff3a3329afa81ef7cb710612a07c0e7c019a63d6bdbab888ec5d0d23f9a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page