Skip to main content

sqldf for pandas

Project description

pandasql allows you to query pandas DataFrames using SQL syntax. It works similarly to sqldf in R. pandasql seeks to provide a more familiar way of manipulating and cleaning data for people new to Python or pandas.

Installation

$ pip install -U pandasql

Bascis

The main function used in pandasql is sqldf. sqldf accepts 2 parametrs - a sql query string - an set of session/environment variables (locals() or globals())

Specifying locals() or globals() can get tedious. You can defined a short helper function to fix this.

from pandasql import sqldf
pysqldf = lambda q: sqldf(q, globals())

Querying

pandasql uses SQLite syntax. Any pandas dataframes will be automatically detected by pandasql. You can query them as you would any regular SQL table.

$ python
>>> from pandasql import sqldf, load_meat, load_births
>>> pysqldf = lambda q: sqldf(q, globals())
>>> meat = load_meat()
>>> births = load_births()
>>> print pysqldf("SELECT * FROM meat LIMIT 10;").head()
                  date  beef  veal  pork  lamb_and_mutton broilers other_chicken turkey
0  1944-01-01 00:00:00   751    85  1280               89     None          None   None
1  1944-02-01 00:00:00   713    77  1169               72     None          None   None
2  1944-03-01 00:00:00   741    90  1128               75     None          None   None
3  1944-04-01 00:00:00   650    89   978               66     None          None   None
4  1944-05-01 00:00:00   681   106  1029               78     None          None   None

joins and aggregations are also supported

>>> q = """SELECT
        m.date, m.beef, b.births
     FROM
        meats m
     INNER JOIN
        births b
           ON m.date = b.date;"""
>>> joined = pyqldf(q)
>>> print joined.head()
                    date    beef  births
403  2012-07-01 00:00:00  2200.8  368450
404  2012-08-01 00:00:00  2367.5  359554
405  2012-09-01 00:00:00  2016.0  361922
406  2012-10-01 00:00:00  2343.7  347625
407  2012-11-01 00:00:00  2206.6  320195

>>> q = "select
           strftime('%Y', date) as year
           , SUM(beef) as beef_total
           FROM
              meat
           GROUP BY
              year;"
>>> print pysqldf(q).head()
   year  beef_total
0  1944        8801
1  1945        9936
2  1946        9010
3  1947       10096
4  1948        8766

More information and code samples available in the examples folder or on our blog.

Analytics

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandasql-0.4.3.tar.gz (24.3 kB view details)

Uploaded Source

Built Distribution

pandasql-0.4.3-py2.7.egg (27.4 kB view details)

Uploaded Egg

File details

Details for the file pandasql-0.4.3.tar.gz.

File metadata

  • Download URL: pandasql-0.4.3.tar.gz
  • Upload date:
  • Size: 24.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandasql-0.4.3.tar.gz
Algorithm Hash digest
SHA256 47456db26c11921f6071b2a6d7b7de1e69703e6367549075fa7cb399abb8093b
MD5 ab5235c71610559ece40558dedad3a9a
BLAKE2b-256 0d27a3b46f2d8fb411a140bf0fcc31e476c3715ea13671254efac2d4a3a59780

See more details on using hashes here.

File details

Details for the file pandasql-0.4.3-py2.7.egg.

File metadata

File hashes

Hashes for pandasql-0.4.3-py2.7.egg
Algorithm Hash digest
SHA256 c83e5d121cb8ea6fc39b28416a2f0eae0b569d8426537f1fb31d785014aa5bce
MD5 9c77de04db0ce4f4c7f095ca02235b13
BLAKE2b-256 e08810e1ba6c06924d932bbd299e4fc5e0490b5ec32c44268e6b5b3adfcdcc33

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page