Skip to main content

sqldf for pandas

Project description

pandasql allows you to query pandas DataFrames using SQL syntax. It works similarly to sqldf in R. pandasql seeks to provide a more familiar way of manipulating and cleaning data for people new to Python or pandas.

Installation

$ pip install -U pandasql

Basics

The main function used in pandasql is sqldf. sqldf accepts 2 parametrs - a sql query string - an set of session/environment variables (locals() or globals())

Specifying locals() or globals() can get tedious. You can defined a short helper function to fix this.

from pandasql import sqldf
pysqldf = lambda q: sqldf(q, globals())

Querying

pandasql uses SQLite syntax. Any pandas dataframes will be automatically detected by pandasql. You can query them as you would any regular SQL table.

$ python
>>> from pandasql import sqldf, load_meat, load_births
>>> pysqldf = lambda q: sqldf(q, globals())
>>> meat = load_meat()
>>> births = load_births()
>>> print pysqldf("SELECT * FROM meat LIMIT 10;").head()
                  date  beef  veal  pork  lamb_and_mutton broilers other_chicken turkey
0  1944-01-01 00:00:00   751    85  1280               89     None          None   None
1  1944-02-01 00:00:00   713    77  1169               72     None          None   None
2  1944-03-01 00:00:00   741    90  1128               75     None          None   None
3  1944-04-01 00:00:00   650    89   978               66     None          None   None
4  1944-05-01 00:00:00   681   106  1029               78     None          None   None

joins and aggregations are also supported

>>> q = """SELECT
        m.date, m.beef, b.births
     FROM
        meats m
     INNER JOIN
        births b
           ON m.date = b.date;"""
>>> joined = pyqldf(q)
>>> print joined.head()
                    date    beef  births
403  2012-07-01 00:00:00  2200.8  368450
404  2012-08-01 00:00:00  2367.5  359554
405  2012-09-01 00:00:00  2016.0  361922
406  2012-10-01 00:00:00  2343.7  347625
407  2012-11-01 00:00:00  2206.6  320195

>>> q = "select
           strftime('%Y', date) as year
           , SUM(beef) as beef_total
           FROM
              meat
           GROUP BY
              year;"
>>> print pysqldf(q).head()
   year  beef_total
0  1944        8801
1  1945        9936
2  1946        9010
3  1947       10096
4  1948        8766

More information and code samples available in the examples folder or on our blog.

Analytics

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandasql-0.6.0.tar.gz (24.7 kB view details)

Uploaded Source

Built Distribution

pandasql-0.6.0-py2.7.egg (28.2 kB view details)

Uploaded Egg

File details

Details for the file pandasql-0.6.0.tar.gz.

File metadata

  • Download URL: pandasql-0.6.0.tar.gz
  • Upload date:
  • Size: 24.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandasql-0.6.0.tar.gz
Algorithm Hash digest
SHA256 9a2bf405770550463497eb5c4ae2c5d6977a931af12cd02d9ba92ff51ac783c8
MD5 664a2022199268d51059359050df38a8
BLAKE2b-256 48b05c2230612b603c424d3f696a357021c721a72a0dc9563527b1d8ef6a8063

See more details on using hashes here.

File details

Details for the file pandasql-0.6.0-py2.7.egg.

File metadata

  • Download URL: pandasql-0.6.0-py2.7.egg
  • Upload date:
  • Size: 28.2 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandasql-0.6.0-py2.7.egg
Algorithm Hash digest
SHA256 afcf566f1decf7909f6fcb52ecea46cce912c918040385decc7c49bce9bd344d
MD5 30b0ed25512a57f2e93bef8777de8966
BLAKE2b-256 6462f45d1d06f9e2287b8be1f1ce3e18e53657a1ffb4b0a66b598647592504cb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page