Skip to main content

Package for easy datarequests from sensortings

Project description

pandassta: combining sensorthings and pandas

pandassta package allows easy tools to interact with a FROST-Server Sensorthings API, using pandas dataframes. This package was developed within a quality assurance project, which is reflected in some specific functions.

Installation

pip install pandassta

Basic usage

Building query

Different wrappers are available for some common queries, but custom queries can easily be constructed. The code below builds a query to get the observations per datastream, with the observed properties of thing 1.

obsprop = Entity(Entities.OBSERVEDPROPERTY)
obsprop.selection = [Properties.NAME, Properties.IOT_ID]

obs = Entity(Entities.OBSERVATIONS)
obs.settings = [Settings.COUNT("true"), Settings.TOP(0)]
obs.selection = [Properties.IOT_ID]

ds = Entity(Entities.DATASTREAMS)
ds.settings = [Settings.COUNT("true")]
ds.expand = [obsprop, obs]
ds.selection = [
    Properties.NAME,
    Properties.IOT_ID,
    Properties.DESCRIPTION,
    Properties.UNITOFMEASUREMENT,
    Entities.OBSERVEDPROPERTY,
]
thing = Entity(Entities.THINGS)
thing.id = 1
thing.selection = [Properties.NAME, Properties.IOT_ID, Entities.DATASTREAMS]
thing.expand = [ds]
query = Query(base_url=config.load_sta_url(), root_entity=thing)
query_http = query.build()

Step by step tutorial

Lets assume you want to obtain the air temperature and water temperature measured between 2023-03-10 00:00 and 2023-03-11 10:00.

  • Get list of things
    • Imports

      from pandassta.sta_requests import Config, Entity, Entities, Query, Properties
      from pandassta.sta_requests import set_sta_url, get_request, response_datastreams_to_df
      
    • Config

      config = Config()
      set_sta_url("https://sensors.naturalsciences.be/sta/v1.1")
      
      thing = Entity(Entities.THINGS) #not structly needed in this step, but needed later
      
    • Get json

      # if `thing` is not defined 
      # query = Query(config.load_sta_url(), root_entity=Entities.THINGS)
      query = Query(config.load_sta_url(), root_entity=thing)
      q_url = query.build() # if needed
      response = get_request(query)
      
  • Get list of datastreams
  • Get the relevant data/observations. In this example, datastreams 7749 and 7767 were selected, but multiple datastreams give the air or water temperature!
    • define the filter

      filter_ds = f"{Properties.IOT_ID} in (7749, 7767)"
      filter_obs = f"overlaps({Properties.PHENOMENONTIME}, 2023-03-10T00:00Z/2023-03-11T10:00Z)"
      ds.filter = filter_ds
      obs = Entity(Entities.OBSERVATIONS)
      
      obs.filter = filter_obs
      
      # # INCLUDING feature of interest! (coordinates)
      # foi = Entity(Entities.FEATUREOFINTEREST)
      # foi.selection = [Properties.COORDINATES, Properties.IOT_ID]
      # obs.expand = [foi]
      
      ds.expand = [obs]
      
      response = get_request(query)
      
  • Data to a pandas dataframe
    • call pandassta method and verify dataframe

      df = response_datastreams_to_df(response[1])
      df.head()
      
      • output:

        @iot.selfLink @iot.id phenomenonTime resultTime result resultQuality observation_type observed_property_id units feature_id long lat
        0 Link 1155244072 2023-03-10 01:04:00 None 9.8811 2 NaN None Degrees Celsius None None None
        1 Link 1155246938 2023-03-10 01:10:00 None 9.8618 2 NaN None Degrees Celsius None None None
        2 Link 1155251749 2023-03-10 01:20:03 None 9.7390 2 NaN None Degrees Celsius None None None
        3 Link 1155256547 2023-03-10 01:30:06 None 9.7692 2 NaN None Degrees Celsius None None None
        4 Link 1155261355 2023-03-10 01:40:08 None 9.7360 2 NaN None Degrees Celsius None None None

Components

General definitions: sta.py

Reflection of the sensorthings structure.

Construction and execution of queries: sta_requests.py

Classes and function that allow or simplify the construction requests.

General function to go from a json response to a pandas dataframe: df.py

Classes and functions to convert observations to a dataframe.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandassta-0.0.8.tar.gz (34.6 kB view details)

Uploaded Source

Built Distribution

pandassta-0.0.8-py3-none-any.whl (28.5 kB view details)

Uploaded Python 3

File details

Details for the file pandassta-0.0.8.tar.gz.

File metadata

  • Download URL: pandassta-0.0.8.tar.gz
  • Upload date:
  • Size: 34.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for pandassta-0.0.8.tar.gz
Algorithm Hash digest
SHA256 6bd3c104dd0ac7ca20f64b8db8e50442fd40285bb07eebbdf0a00b6845526031
MD5 d2148d69226357418f16bdf1a3e9eb8b
BLAKE2b-256 67fa38c139cf9bfeb2c0d88dcb2d29c08d37e4324a4c19fdf4543ce58e09c954

See more details on using hashes here.

File details

Details for the file pandassta-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: pandassta-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 28.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for pandassta-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 9ff4b5382776696e00406f1061b710ac95c10a955eeeb2e40e0d44e39af22b12
MD5 6a175efcb2d070cc7406b1329a2603af
BLAKE2b-256 c53cf3de88c45e85d6df145fc1ce81f172125ee9e2021a35eb824eb0628cc2dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page