Skip to main content

A light-weight and flexible validation package for pandas data structures.

Project description

Pandera

A flexible and expressive pandas validation library.


Build Status PyPI version shields.io PyPI license Project Status: Active – The project has reached a stable, usable state and is being actively developed. Documentation Status codecov PyPI pyversions DOI

pandas data structures hide a lot of information, and explicitly validating them at runtime in production-critical or reproducible research settings is a good idea. pandera enables users to:

  1. Check the types and properties of columns in a DataFrame or values in a Series.
  2. Perform more complex statistical validation like hypothesis testing.
  3. Seamlessly integrate with existing data analysis/processing pipelines via function decorators.

pandera provides a flexible and expressive API for performing data validation on tidy (long-form) and wide data to make data processing pipelines more readable and robust.

Documentation

The official documentation is hosted on ReadTheDocs: https://pandera.readthedocs.io

Install

Using pip:

pip install pandera

Using conda:

conda install -c cosmicbboy pandera

Example Usage

DataFrameSchema

import pandas as pd
import pandera as pa

from pandera import Column, DataFrameSchema, Check


# validate columns
schema = DataFrameSchema({
    # the check function expects a series argument and should output a boolean
    # or a boolean Series.
    "column1": Column(pa.Int, Check(lambda s: s <= 10)),
    "column2": Column(pa.Float, Check(lambda s: s < -1.2)),
    # you can provide a list of validators
    "column3": Column(pa.String, [
        Check(lambda s: s.str.startswith("value_")),
        Check(lambda s: s.str.split("_", expand=True).shape[1] == 2)
    ]),
})

# alternatively, you can pass strings representing the legal pandas datatypes:
# http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
schema = DataFrameSchema({
    "column1": Column("int64", Check(lambda s: s <= 10)),
    ...
})

df = pd.DataFrame({
    "column1": [1, 4, 0, 10, 9],
    "column2": [-1.3, -1.4, -2.9, -10.1, -20.4],
    "column3": ["value_1", "value_2", "value_3", "value_2", "value_1"]
})

validated_df = schema.validate(df)
print(validated_df)

#     column1  column2  column3
#  0        1     -1.3  value_1
#  1        4     -1.4  value_2
#  2        0     -2.9  value_3
#  3       10    -10.1  value_2
#  4        9    -20.4  value_1

Development Installation

git clone https://github.com/pandera-dev/pandera.git
cd pandera
pip install -r requirements.txt
pip install -e .

Tests

pip install pytest
pytest tests

Contributing to pandera GitHub contributors

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide on GitHub.

Issues

Go here to submit feature requests or bugfixes.

Other Data Validation Libraries

Here are a few other alternatives for validating Python data structures.

Generic Python object data validation

pandas-specific data validation

Why pandera?

  • pandas-centric data types, column nullability, and uniqueness are first-class concepts.
  • check_input and check_output decorators enable seamless integration with existing code.
  • Checks provide flexibility and performance by providing access to pandas API by design.
  • Hypothesis class provides a tidy-first interface for statistical hypothesis testing.
  • Checks and Hypothesis objects support both tidy and wide data validation.
  • Comprehensive documentation on key functionality.

Citation Information

@misc{niels_bantilan_2019_3385266,
  author       = {Niels Bantilan and
                  Nigel Markey and
                  Riccardo Albertazzi and
                  chr1st1ank},
  title        = {pandera-dev/pandera: 0.2.0 pre-release 1},
  month        = sep,
  year         = 2019,
  doi          = {10.5281/zenodo.3385266},
  url          = {https://doi.org/10.5281/zenodo.3385266}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandera-0.2.2.tar.gz (19.7 kB view details)

Uploaded Source

Built Distribution

pandera-0.2.2-py3-none-any.whl (30.5 kB view details)

Uploaded Python 3

File details

Details for the file pandera-0.2.2.tar.gz.

File metadata

  • Download URL: pandera-0.2.2.tar.gz
  • Upload date:
  • Size: 19.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.1

File hashes

Hashes for pandera-0.2.2.tar.gz
Algorithm Hash digest
SHA256 75581ad33e5cda3754ebaeeb3f3ee731df4fd150db7d176c391537e409b86139
MD5 d0147c49f90413d74fe92bb80405b971
BLAKE2b-256 02828416259bf3213777e323e3e4ff90373bf9e1dcbe8473702ebcca0f9c6773

See more details on using hashes here.

File details

Details for the file pandera-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: pandera-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 30.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.1

File hashes

Hashes for pandera-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c3aacdb04ddb7d979ec032c3e2b6b4eb040bf6ca649c58194f308abe03b8cc80
MD5 8b202b0895672cd8c572155ed6cff328
BLAKE2b-256 011f51e26c810f25109b72f07a2fd4de851f71991437ebc95472503b77938409

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page