Skip to main content

A light-weight and flexible validation package for pandas data structures.

Project description

Pandera

A flexible and expressive pandas validation library.


Build Status PyPI version shields.io PyPI license pyOpenSci Project Status: Active – The project has reached a stable, usable state and is being actively developed. Documentation Status codecov PyPI pyversions DOI asv

pandas data structures contain information that pandera explicitly validates at runtime. This is useful in production-critical or reproducible research settings. pandera enables users to:

  1. Check the types and properties of columns in a DataFrame or values in a Series.
  2. Perform more complex statistical validation like hypothesis testing.
  3. Seamlessly integrate with existing data analysis/processing pipelines via function decorators.

pandera provides a flexible and expressive API for performing data validation on tidy (long-form) and wide data to make data processing pipelines more readable and robust.

Documentation

The official documentation is hosted on ReadTheDocs: https://pandera.readthedocs.io

Install

Using pip:

pip install pandera

Using conda:

conda install -c conda-forge pandera

Example Usage

DataFrameSchema

import pandas as pd
import pandera as pa

from pandera import Column, DataFrameSchema, Check, check_output


# validate columns
schema = DataFrameSchema({
    # the check function expects a series argument and should output a boolean
    # or a boolean Series.
    "column1": Column(pa.Int, Check(lambda s: s <= 10)),
    "column2": Column(pa.Float, Check(lambda s: s < -1.2)),
    # you can provide a list of validators
    "column3": Column(pa.String, [
        Check(lambda s: s.str.startswith("value_")),
        Check(lambda s: s.str.split("_", expand=True).shape[1] == 2)
    ]),
})

df = pd.DataFrame({
    "column1": [1, 4, 0, 10, 9],
    "column2": [-1.3, -1.4, -2.9, -10.1, -20.4],
    "column3": ["value_1", "value_2", "value_3", "value_2", "value_1"]
})

validated_df = schema.validate(df)
print(validated_df)

#     column1  column2  column3
#  0        1     -1.3  value_1
#  1        4     -1.4  value_2
#  2        0     -2.9  value_3
#  3       10    -10.1  value_2
#  4        9    -20.4  value_1

# If you have an existing data pipeline that uses pandas data structures, you can use the check_input and check_output decorators to check function arguments or returned variables from existing functions.

@check_output(schema)
def custom_function(df):
    return df

Development Installation

git clone https://github.com/pandera-dev/pandera.git
cd pandera
pip install -r requirements-dev.txt
pip install -e .

Tests

pip install pytest
pytest tests

Contributing to pandera GitHub contributors

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide on GitHub.

Issues

Go here to submit feature requests or bugfixes.

Other Data Validation Libraries

Here are a few other alternatives for validating Python data structures.

Generic Python object data validation

pandas-specific data validation

Other tools that include data validation

Why pandera?

  • pandas-centric data types, column nullability, and uniqueness are first-class concepts.
  • check_input and check_output decorators enable seamless integration with existing code.
  • Checks provide flexibility and performance by providing access to pandas API by design.
  • Hypothesis class provides a tidy-first interface for statistical hypothesis testing.
  • Checks and Hypothesis objects support both tidy and wide data validation.
  • Comprehensive documentation on key functionality.

Citation Information

@misc{niels_bantilan_2019_3385266,
  author       = {Niels Bantilan and
                  Nigel Markey and
                  Riccardo Albertazzi and
                  chr1st1ank},
  title        = {pandera-dev/pandera: 0.2.0 pre-release 1},
  month        = sep,
  year         = 2019,
  doi          = {10.5281/zenodo.3385266},
  url          = {https://doi.org/10.5281/zenodo.3385266}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandera-0.3.0.tar.gz (26.3 kB view details)

Uploaded Source

Built Distribution

pandera-0.3.0-py3-none-any.whl (37.4 kB view details)

Uploaded Python 3

File details

Details for the file pandera-0.3.0.tar.gz.

File metadata

  • Download URL: pandera-0.3.0.tar.gz
  • Upload date:
  • Size: 26.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.39.0 CPython/3.6.7

File hashes

Hashes for pandera-0.3.0.tar.gz
Algorithm Hash digest
SHA256 e009bd6963a30fe9aae2f5a964fd4212caa0dce59cdb222b53d0a245236da090
MD5 31706fb01d1e1e80401efeea9e270174
BLAKE2b-256 1adbd1611212af415ede81ded2b45e3881546e1657fd6c968ed2ad2c89d7e9d2

See more details on using hashes here.

File details

Details for the file pandera-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: pandera-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 37.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.39.0 CPython/3.6.7

File hashes

Hashes for pandera-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 61b04c31add4bac1515072857f8f6a4ec391c701b1bd826c5c28f477779715dc
MD5 6a48191bfcd44dd911b284d0287dc115
BLAKE2b-256 0eaf7da1afbde3045c58dd5234aa36d51fabb9998af4a60aaf709609cdcdefac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page