Pandas with some cool additional features
Project description
pandit ☸️ pandas utils
Pandas with some cool additional features
Installation and usage
pip install pandit
import pandas as pd, import pandit
# or
import pandit as pd
df=pd.read_tsv(path)
df.sieve(x=3).show()
#Pandas behaves normally otherwise
If credentials are needed:
import credentials # you manage that part
assert credentials.gsheet # credential dict in https://docs.gspread.org/en/latest/oauth2.html
assert credentials.dropbox
pd.credentials = credentials
sieve
df.sieve(column1=value1, columns2=value2)
# returns df rows where column equals value - if value is not a list, otherwise:
df.sieve(column3=[value1,value2])
# returns df rows where column is value1 or value2; use [[value1,value2]] to match lists
# It's like pd.query but with a pythonic syntax instead of the sql string.
show
df.show() # shows multiple rows column by column (one line per column) with nice formatting, one line per column
# ideal for inspecting NLP datasets
df.rshow(n) # random sample of size n (default is 20)
Also:
df.bold_max()
bold max float values df.bold_max().to_latex()
pd.read_tsv
read_csv
with sep='\t'
for lazy persons
pd.read_jsonl
pd.read
df.read_{extension}
where extension is extracted from the input path (.csv = read_csv)
pd.read_wandb(project_name)
df.drop_constant_column
drop columns that are constant
df.to_dropbox(path, format=None, token=None,**kwargs)
Save dataframe to dropbox
df.to_sheets(id,sheet_name,credential=None, include_index=False)
Save dataframe to sheets
df.undersample(column='label',sampling_strategy='auto',random_state=None,replacement=False)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pandit-0.0.10.tar.gz
(16.5 kB
view details)
Built Distribution
pandit-0.0.10-py3-none-any.whl
(16.7 kB
view details)
File details
Details for the file pandit-0.0.10.tar.gz
.
File metadata
- Download URL: pandit-0.0.10.tar.gz
- Upload date:
- Size: 16.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ac53de4503c47f9ddc67db8d328bafad87b3ba497f092da9be2e82a6bc49d92 |
|
MD5 | f498f7cf09b869b81cdaa3f934a38af1 |
|
BLAKE2b-256 | cb747c4da0e177a37e78e9237881687a73b0d1d82d4c728bb674f3d7ba3e996c |
File details
Details for the file pandit-0.0.10-py3-none-any.whl
.
File metadata
- Download URL: pandit-0.0.10-py3-none-any.whl
- Upload date:
- Size: 16.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 622f618cdf53620cd8d0acba74ededb0b65fccc5f9173c96a29972326a7743da |
|
MD5 | e61f40518b8b8700954a5c40304c25f5 |
|
BLAKE2b-256 | 30a4df3cecc47a7f1b66947eeec6a3521b17ee2ae69974c439ba11aa2b230961 |