Skip to main content

Pandas with some cool additional features

Project description

pandit ☸️ pandas utils

Pandas with some cool additional features

Installation and usage

pip install pandit

import pandas as pd, import pandit
# or 
import pandit as pd

df=pd.read_tsv(path)
df.sieve(x=3).show()
#Pandas behaves normally otherwise
If credentials are needed:
import credentials # you manage that part
assert credentials.gsheet # credential dict in https://docs.gspread.org/en/latest/oauth2.html
assert credentials.dropbox 
pd.credentials = credentials

sieve

df.sieve(column1=value1, columns2=value2)
# returns df rows where column equals value - if value is not a list, otherwise:
df.sieve(column3=[value1,value2])
# returns df rows where column is value1 or value2; use [[value1,value2]] to match lists
# It's like pd.query but with a pythonic syntax instead of the sql string.

show

df.show() # shows multiple rows column by column (one line per column) with nice formatting, one line per column
# ideal for inspecting NLP datasets
df.rshow(n) # random sample of size n (default is 20)

Also:

df.bold_max()

bold max float values df.bold_max().to_latex()

pd.read_tsv

read_csv with sep='\t' for lazy persons

pd.read_jsonl

pd.read

df.read_{extension} where extension is extracted from the input path (.csv = read_csv)

pd.read_wandb(project_name)

df.drop_constant_column

drop columns that are constant

df.to_dropbox(path, format=None, token=None,**kwargs)

Save dataframe to dropbox

df.to_sheets(id,sheet_name,credential=None, include_index=False)

Save dataframe to sheets

df.undersample(column='label',sampling_strategy='auto',random_state=None,replacement=False)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandit-0.0.10.tar.gz (16.5 kB view details)

Uploaded Source

Built Distribution

pandit-0.0.10-py3-none-any.whl (16.7 kB view details)

Uploaded Python 3

File details

Details for the file pandit-0.0.10.tar.gz.

File metadata

  • Download URL: pandit-0.0.10.tar.gz
  • Upload date:
  • Size: 16.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pandit-0.0.10.tar.gz
Algorithm Hash digest
SHA256 5ac53de4503c47f9ddc67db8d328bafad87b3ba497f092da9be2e82a6bc49d92
MD5 f498f7cf09b869b81cdaa3f934a38af1
BLAKE2b-256 cb747c4da0e177a37e78e9237881687a73b0d1d82d4c728bb674f3d7ba3e996c

See more details on using hashes here.

File details

Details for the file pandit-0.0.10-py3-none-any.whl.

File metadata

  • Download URL: pandit-0.0.10-py3-none-any.whl
  • Upload date:
  • Size: 16.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pandit-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 622f618cdf53620cd8d0acba74ededb0b65fccc5f9173c96a29972326a7743da
MD5 e61f40518b8b8700954a5c40304c25f5
BLAKE2b-256 30a4df3cecc47a7f1b66947eeec6a3521b17ee2ae69974c439ba11aa2b230961

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page