Skip to main content

A quick and easy way to convert a Pandas DataFrame to a Tableau extract.

Project description

pandleau

A quick and easy way to convert a Pandas DataFrame to a Tableau .tde or .hyper extract.

Getting Started

Prerequisites

  • If you want to output as a .tde format, you'll need to install TableauSDK directly from Tableau's site here.
  • If you want to output as a .hyper format, you'll need to install Extract API 2.0 directly from Tableau's site here.
  • Although Tableau's site claims Python 3 is not supported, this module is tested to work fully functional on Python 3.6.

Installing

Once installing TableauSDK is done, download this repository, navigate to your downloads file and run the following in cmd or terminal:

python -m setup.py install

You can also install pandleau using pip:

pip install pandleau

But note that this will throw a warning to install tableausdk using the above link in Prerequisites.

Example

I grabbed the following Brazil flights data off of kaggle for this example: https://www.kaggle.com/microtang/exploring-brazil-flights-data/data.

import pandas as pd
from pandleau import *

# Import the data
example_df = pd.read_csv(r'example/BrFlights2.csv', encoding = 'iso-8859-1')

# Format dates in pandas
example_df['Partida.Prevista'] = pd.to_datetime(example_df['Partida.Prevista'], format = '%Y-%m-%d')
example_df['Partida.Real'] = pd.to_datetime(example_df['Partida.Real'], format = '%Y-%m-%d')
example_df['Chegada.Prevista'] = pd.to_datetime(example_df['Chegada.Prevista'], format = '%Y-%m-%d')
example_df['Chegada.Real'] = pd.to_datetime(example_df['Chegada.Real'], format = '%Y-%m-%d')

# Set up a spatial column
example_df.loc[:, 'SpatialDest'] = example_df['LongDest'].apply( lambda x: "POINT (" + str( round(x, 6) ) ) + \
	example_df['LatDest'].apply( lambda x: " "+str( round(x, 6) ) + ")" )

# Change to pandleau object
df_tableau = pandleau(example_df)

# Define spatial column
df_tableau.set_spatial('SpatialDest', indicator=True)

# Write .tde or .hyper Extract!
df_tableau.to_tableau('test.hyper', add_index=False)

Tableau Server/Online Automation

Eric Chan (erickhchan) wrote a really cool blog post on using Python to blend and clean data before pushing it to Tableau Online (which is a SaaS version of Tableau Server). This is a great way to learn how to automate the data refresh process with Tableau Server Client and Pandleau. Check out his blog post here: https://www.erickhchan.com/data/2019/03/18/python-tableau-server.html

Authors

Related Project

RTableau Convert R data.frame to Tableau Extract using pandleau

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandleau-0.4.1.tar.gz (5.1 kB view details)

Uploaded Source

Built Distribution

pandleau-0.4.1-py3-none-any.whl (6.2 kB view details)

Uploaded Python 3

File details

Details for the file pandleau-0.4.1.tar.gz.

File metadata

  • Download URL: pandleau-0.4.1.tar.gz
  • Upload date:
  • Size: 5.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.3

File hashes

Hashes for pandleau-0.4.1.tar.gz
Algorithm Hash digest
SHA256 1a008b54f3677d87836d3325c14b9e540eb06c4810baa3dff9edd40bc4423711
MD5 f309c3d6934f60f0ac9454f732cb02d5
BLAKE2b-256 bcbc3c8b67c272ed8c250e53f95a42f46132a9a4c08ecfb80f366e8396329695

See more details on using hashes here.

File details

Details for the file pandleau-0.4.1-py3-none-any.whl.

File metadata

  • Download URL: pandleau-0.4.1-py3-none-any.whl
  • Upload date:
  • Size: 6.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.3

File hashes

Hashes for pandleau-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 89a81ec6a592cd5ae280b9ab9885f0017d83fcf40ce8ce83e9553f8c9b897c43
MD5 14d19126e9ca001135762bfe8cd9a8e8
BLAKE2b-256 4c5ba1b8843ebec0dd687bc969b3f4ed9579c38e9ef3d02b0e5c635929f605fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page