Skip to main content

Pandora plugin to create the cost volume with the neural network mc-cnn

Project description

Pandora plugin mccnn

MC-CNN neural network plugin for .

OverviewInstallUsageRelatedReferences

Overview

Pandora stereo matching framework is designed to provide some state of the art stereo algorithms and to add others one as plugins.
This Pandora plugin aims to compute the cost volume using the similarity measure produced by MC-CNN neural network [MCCNN], with the MCCNN library .

Install

pandora_plugin_mccnn is available on Pypi and can be installed by:

pip install pandora_plugin_mccnn

This command will installed required dependencies as Pandora and MCCNN.

Usage

Let's refer to Pandora's readme or online documentation for further information about Pandora general functionalities.

More specifically, you can find :

Pretrained Weights for MCCNN networks

Download weights files

Pretrained weights for mc-cnn fast and mc-cnn accurate neural networks are available in the weights directory :

  • mc_cnn_fast_mb_weights.pt and mc_cnn_accurate_mb_weights.pt are the weights of the pretrained networks on the Middlebury dataset [Middlebury]
  • mc_cnn_fast_data_fusion_contest.pt and mc_cnn_accurate_data_fusion_contest.pt are the weights of the pretrained networks on the Data Fusion Contest dataset [DFC]

To download the pretrained weights:

wget https://raw.githubusercontent.com/CNES/Pandora_MCCNN/master/mc_cnn/weights/mc_cnn_fast_mb_weights.pt
wget https://raw.githubusercontent.com/CNES/Pandora_MCCNN/master/mc_cnn/weights/mc_cnn_fast_data_fusion_contest.pt
wget https://raw.githubusercontent.com/CNES/Pandora_MCCNN/master/mc_cnn/weights/mc_cnn_accurate_mb_weights.pt
wget https://raw.githubusercontent.com/CNES/Pandora_MCCNN/master/mc_cnn/weights/mc_cnn_accurate_data_fusion_contest.pt

Access weights from pip package

Pretrained weights are stored into the pip package and downloaded for any installation of mc_cnn pip package. To access it, use the weights submodule :

from mc_cnn.weights import get_weights
mc_cnn_fast_mb_weights_path = get_weights(arch="fast", training_dataset="middlebury")
mc_cnn_fast_data_fusion_contest_path = get_weights(arch="fast", training_dataset="dfc")
mc_cnn_accurate_mb_weights_path = get_weights(arch="accurate", training_dataset="middlebury")
mc_cnn_accurate_data_fusion_contest = get_weights(arch="accurate", training_dataset="dfc")

Output example

The figures below show disparity maps produced on mountain, and desert areas generated with the Census and MCCNN similarity measures :

Left image Left disparity map using Census measure Left disparity map using mc-cnn fast pretrained on Middlebury Left disparity map using mc-cnn fast pretrained DFC
mountain_img mountain_census mountain_mid mountain_dfc
desert_img desert_census desert_mid desert_dfc

Related

Pandora - A stereo matching framework
MCCNN - Pytorch/python implementation of mc-cnn neural network

References

Please cite the following paper when using Pandora and pandora_plugin_mccnn:

Defonte, V., Dumas, L., Cournet, M., & Sarrazin, E. (2021, July). Evaluation of MC-CNN Based Stereo Matching Pipeline for the CO3D Earth Observation Program. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 7670-7673). IEEE.

Cournet, M., Sarrazin, E., Dumas, L., Michel, J., Guinet, J., Youssefi, D., Defonte, V., Fardet, Q., 2020. Ground-truth generation and disparity estimation for optical satellite imagery. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[MCCNN] Zbontar, J., & LeCun, Y. (2016). Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res., 17(1), 2287-2318.

[Middlebury] Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., & Westling, P. (2014, September). High-resolution stereo datasets with subpixel-accurate ground truth. In German conference on pattern recognition (pp. 31-42). Springer, Cham.

[DFC] Bosch, M., Foster, K., Christie, G., Wang, S., Hager, G. D., & Brown, M. (2019, January). Semantic stereo for incidental satellite images. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1524-1532). IEEE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandora_plugin_mccnn-1.3.3.tar.gz (4.9 MB view details)

Uploaded Source

File details

Details for the file pandora_plugin_mccnn-1.3.3.tar.gz.

File metadata

  • Download URL: pandora_plugin_mccnn-1.3.3.tar.gz
  • Upload date:
  • Size: 4.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pandora_plugin_mccnn-1.3.3.tar.gz
Algorithm Hash digest
SHA256 64587ed463b14dd6fc7c1e55fd1a7e2842c00cd76383ff4a5d3042d61d67d97a
MD5 0263afd351ff71f9550029d1348a9e1c
BLAKE2b-256 129a8360ebece44a622724e1ff804442cca8b85c363fd007991108847fd9846c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page