Generate a PanGenome given a set of genomes
Project description
Please submit questions to the Issues page on GitLab
Primary contact: Todd P. Michael, tmicha@salk.edu
PanKmer
k-mer based and reference-free pangenome analysis. See the quickstart below, or read the documentation.
Repository structure
benchmark/
Shell scripts defining benchmarking runsdocs/
Source code and makefiles for Sphinx documentationsource/
Documentation source code in ReStructuredText formatMakefile
Sphinx infrastructuremake.bat
Sphinx infrastructurepankmer-manual.pdf
User manual generated fromsphinx-build -b latexpdf
example/
Files for use in README examples, can probably remove thisrust/
Cargo config and Rust source codesrc/
Rust codeCargo.toml
Cargo config
snakemake/
Snakemake workflows, some of these are currently outdatedsrc/pankmer/
Python source codetest/
Python unit tests (run withpytest
)
License
PanKmer is licensed under a Salk Institute BSD license
Installation
In a conda environment
First create an environment that includes all dependencies:
conda create -c conda-forge -c bioconda -n pankmer \
python=3.10 cython gff2bed more-itertools pybedtools \
python-newick pyfaidx rust seaborn upsetplot urllib3 \
tabix dash-bootstrap-components
Then install PanKmer with pip
:
conda activate pankmer
pip install pankmer
With pip
PanKmer is built with Rust,
so you will need to install
it if you have not already done so. Then you can install PanKmer with pip
:
pip install pankmer
Check installation
Check that the installation was successful by running:
pankmer --version
Tutorial
Download example dataset
The download-example
subcommand will download a small example dataset of
Chr19 sequences from S. polyrhiza.
pankmer download-example -d .
After running this command the directory PanKmer_example_Sp_Chr19/
will be present in the working directory. It contains FASTA files representing Chr19 from three genomes, and GFF files giving their gene annotations.
ls PanKmer_example_Sp_Chr19/*
PanKmer_example_Sp_Chr19/README.md
PanKmer_example_Sp_Chr19/Sp_Chr19_features:
Sp9509_oxford_v3_Chr19.gff3.gz Sp9512_a02_genes_Chr19.gff3.gz
PanKmer_example_Sp_Chr19/Sp_Chr19_genomes:
Sp7498_HiC_Chr19.fasta.gz Sp9509_oxford_v3_Chr19.fasta.gz Sp9512_a02_genome_Chr19.fasta.gz
To get started, navigate to the downloaded directory.
cd PanKmer_example_Sp_Chr19/
Build a k-mer index
The k-mer index is a table tracking presence or absence of k-mers in the set of input genomes. To build an index, use the index
subcommand and provide a directory containing the input genomes.
pankmer index -g Sp_Chr19_genomes/ -o Sp_Chr19_index.tar
After completion, the index will be present as a tar file Sp_Chr19_index.tar
.
tar -tvf Sp_Chr19_index.tar
Sp_Chr19_index/
Sp_Chr19_index/kmers.bgz
Sp_Chr19_index/metadata.json
Sp_Chr19_index/scores.bgz
Note
The input genomes argument proided with the
-g
flag can be a directory, a tar archive, or a space-separated list of FASTA files.If the output argument provided with the
-o
flag ends with.tar
, then the index will be written as a tar archive. Otherwise it will be written as a directory.
Create an adjacency matrix
A useful application of the k-mer index is to generate an adjacency matrix. This is a table of k-mer similarity values for each pair of genomes in the index. We can generate one using the adj-matrix
subcommand, which will produce a CSV or TSV file containing the matrix.
pankmer adj-matrix -i Sp_Chr19_index.tar -o Sp_Chr19_adj_matrix.csv
pankmer adj-matrix -i Sp_Chr19_index.tar -o Sp_Chr19_adj_matrix.tsv
Note
The input index argument proided with the
-i
flag can be tar archive or a directory.
Plot a clustered heatmap
To visualize the adjacency matrix, we can plot a clustered heatmap of the adjacency values. In this case we use the Jaccard similarity metric for pairwise comparisons between genomes:
pankmer clustermap -i Sp_Chr19_adj_matrix.csv \
-o Sp_Chr19_adj_matrix.svg \
--metric jaccard \
--width 6.5 \
--height 6.5
Generate a gene variability heatmap
Generate a heatmap showing variability of genes across genomes. The following command uses the --n-features
option to limit analysis to the first two genes from each input GFF3 file. The resulting image shows the level of variability observed across genes from each genome.
pankmer anchor-heatmap -i Sp_Chr19_index.tar \
-a Sp_Chr19_genomes/Sp9509_oxford_v3_Chr19.fasta.gz Sp_Chr19_genomes/Sp9512_a02_genome_Chr19.fasta.gz \
-f Sp_Chr19_features/Sp9509_oxford_v3_Chr19.gff3.gz Sp_Chr19_features/Sp9512_a02_genes_Chr19.gff3.gz \
-o Sp_Chr19_gene_var.png \
--n-features 2 \
--height 3
Pangenome datasets
The pankmer download-example
subcommand can be used to download genomes from several publicly available pangenome datasets. See the help text:
pankmer download-example --help
usage: pankmer download-example [-h] [-d <dir/>] [-s {Spolyrhiza,Slycopersicum,Zmays,Hsapiens,Bsubtilis,Athaliana}] [-n <int>]
options:
-h, --help show this help message and exit
-d <dir/>, --dir <dir/>
destination directory for example data
-s {Spolyrhiza,Slycopersicum,Zmays,Hsapiens,Bsubtilis,Athaliana}, --species {Spolyrhiza,Slycopersicum,Zmays,Hsapiens,Bsubtilis,Athaliana}
download publicly available genomes. Species: max_samples. Spolyrhiza: 3, Slycopersicum: 46, Zmays: 54, Hsapiens: 94, Bsubtilis: 164, Athaliana: 1135
-n <int>, --n-samples <int>
number of samples to download, must be less than species max [1]
The -s/--species
option selects the species, and the -n/--n-samples
option selects the number of samples to download. The maximum number of samples for each species is:
Species | Max samples |
---|---|
S. polyrhiza | 3 |
S. lycopersicum | 46 |
Z. mays | 54 |
H. sapiens | 94 |
B. subtilis | 164 |
A. thaliana | 1135 |
See below a description of each pangenome dataset
S. lycopersicum
46 Solanum lycopersicum genomes from the SolOmics database. See also: Nature article .
Z. mays
54 Zea mays genomes from the downloads page of MaizeGDB.
H. sapiens
94 Homo sapiens haplotypes from Year 1 of the Human Pangenome Reference Consortium/Human Pangenome Project. Download details found at the HPRC/HPP github repository. Nature article
B. subtilis
164 B. subtilis genomes from NCBI.
A. thaliana
1135 A. thaliana pseudo-genomes from the data center of 1001 Genomes
S. polyrhiza
A collection of 3 Spirodela polyrhiza clones Sp7498, Sp9509, Sp9512, from the following sources: Sp7498 and Sp9509 sequences were sourced from the following references found at http://spirodelagenome.org:
Sp9509_oxford_v3
NCBI: GCA_900492545.1
CoGe: id51364
This genome was generated with Oxford Nanopore and polished with Illumina, scaffolded against the previous Illumina-based genome Sp9509v3 and validated with BioNano optical maps and multi-color FISH (mcFISH).
Hoang PNT, Michael TP, Gilbert S, Chu P, Motley TS, Appenroth KJ, Schubert I, Lam E. Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping and Oxford Nanopore technologies. Plant J. 2018 Jul 28.
Sp7498_HiC
CoGe: 55877
This assembly was generated using Oxford Nanopore long reads and Illumina-based HiC scaffolding.
Harkess A, McGlaughlin F, Bilkey N, Elliott K, Emenecker R, Mattoon E, Miller K, Vierstra R, Meyers BC, Michael TP. High contiguity Spirodela polyrhiza genomes reveal conserved chromosomal structure. Submitted.
Sp9512 sequence was sourced from research data for the following in-progress publication:
Pasaribu B, Acosta K, Aylward A, Abramson BW, Colt K, Hartwick NT, Liang Y, Shanklin J, Michael TP, Lam E Genomics of turions from the Greater Duckweed reveal pathways for tissue dormancy and reemergence strategy of an aquatic plant.
Sp9512 can be downloaded from Michael lab AWS storage.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pankmer-0.20.4.tar.gz
.
File metadata
- Download URL: pankmer-0.20.4.tar.gz
- Upload date:
- Size: 86.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9b15ce3112e601b545c2eb6bf6e91ff34b14d271c72a81f247008814aa7175c |
|
MD5 | 05cb6a619f211ea3ac97ba2f61de1ec4 |
|
BLAKE2b-256 | c6e3015a0e1d72ef8a2316ceae32a0f65020f15bb9fc5c7e978fddece55c07d7 |