Skip to main content

Generate a PanGenome given a set of genomes

Project description

Primary contact: Anthony Aylward, aaylward@salk.edu

PanKmer

k-mer based and reference-free pangenome analysis. See the quickstart below, or read the documentation.

Installation

With pip

pip install git+https://gitlab.com/salk-tm/pankmer.git

In a conda environment

First create an environment that includes all dependencies:

conda create -c conda-forge -c bioconda -n pankmer python==3.10 biopython==1.79 cython pandas setuptools seaborn urllib3 wheel python-newick pyfaidx gff2bed

If running on OSX, a few additional packages will be required:

conda activate pankmer
conda install -c conda-forge clang_osx-64 clangxx_osx-64 gfortran_osx-64

Then install PanKmer with pip:

conda activate pankmer
pip install pip install git+https://gitlab.com/salk-tm/pankmer.git

Check installation

Check that the installation was successful by running:

pankmer --version

Tutorial

Download example dataset

The download_example subcommand will download a small example dataset of Chr19 sequences from S. polyrhiza.

pankmer download_example -d .

After running this command the directory PanKmer_example_Sp_Chr19/ will be present in the working directory. It contains FASTA files representing Chr19 from three genomes, and GFF files giving their gene annotations.

ls PanKmer_example_Sp_Chr19/*
PanKmer_example_Sp_Chr19/README.md

PanKmer_example_Sp_Chr19/Sp_Chr19_features:
Sp7498_HiC_Chr19.gff.gz Sp9509_oxford_v3_Chr19.gff3.gz Sp9512_a02_genes_Chr19.gff3.gz

PanKmer_example_Sp_Chr19/Sp_Chr19_genomes:
Sp7498_HiC_Chr19.fasta.gz Sp9509_oxford_v3_Chr19.fasta.gz Sp9512_a02_genome_Chr19.fasta.gz

To get started, navigate to the downloaded directory.

cd PanKmer_example_Sp_Chr19/

Build a k-mer index

The k-mer index is a table tracking presence or absence of k-mers in the set of input genomes. To build an index, use the index subcommand and provide a directory containing the input genomes.

pankmer index -g Sp_Chr19_genomes/ -o Sp_Chr19_index.tar

After completion, the index will be present as a tar file Sp_Chr19_index.tar.

tar -tvf Sp_Chr19_index.tar
Sp_Chr19_index/
Sp_Chr19_index/kmers.b.gz
Sp_Chr19_index/metadata.json
Sp_Chr19_index/scores.b.gz

Note

The input genomes argument proided with the -g flag can be a directory, a tar archive, or a comma-separated list of FASTA files.

If the output argument provided with the -o flag ends with .tar, then the index will be written as a tar archive. Otherwise it will be written as a directory.

Create an adjacency matrix

A useful application of the k-mer index is to generate an adjacency matrix. This is a table of k-mer similarity values for each pair of genomes in the index. We can generate one using the adj-matrix subcommand, which will produce a CSV file containing the matrix.

pankmer adj-matrix -i Sp_Chr19_index.tar -o Sp_Chr19_adj_matrix.csv

Note

The input index argument proided with the -i flag can be tar archive or a directory.

Plot a clustered heatmap

To visualize the adjacency matrix, we can plot a clustered heatmap of the adjacency values. In this case we use the Jaccard similarity metric for pairwise comparisons between genomes:

pankmer clustermap -i Sp_Chr19_adj_matrix.csv \
  -o Sp_Chr19_adj_matrix.svg \
  --metric jaccard \
  --width 6.5 \
  --height 6.5

example heatmap

Generate a gene variability heatmap

Generate a heatmap showing variability of genes across genomes. The following command uses the --n-features option to limit analysis to the first two genes from each input GFF file. The resulting image shows the level of variability observed across genes from each genome.

pankmer reg_heatmap -i Sp_Chr19_index/ \
  -r Sp_Chr19_genomes/Sp7498_HiC_Chr19.fasta.gz Sp_Chr19_genomes/Sp9509_oxford_v3_Chr19.fasta.gz Sp_Chr19_genomes/Sp9512_a02_genome_Chr19.fasta.gz \
  -f Sp_Chr19_features/Sp7498_HiC_Chr19.gff.gz Sp_Chr19_features/Sp9509_oxford_v3_Chr19.gff3.gz Sp_Chr19_features/Sp9512_a02_genes_Chr19.gff3.gz \
  -o Sp_Chr19_gene_var.png \
  --n-features 2 \
  --height 3

example heatmap

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pankmer-0.10.0.tar.gz (33.3 kB view details)

Uploaded Source

Built Distribution

pankmer-0.10.0-cp310-cp310-macosx_10_9_x86_64.whl (137.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file pankmer-0.10.0.tar.gz.

File metadata

  • Download URL: pankmer-0.10.0.tar.gz
  • Upload date:
  • Size: 33.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.4

File hashes

Hashes for pankmer-0.10.0.tar.gz
Algorithm Hash digest
SHA256 4db18636b280d5ba6fe81ed3545eef1b1ccc9c07f78d4c8ab03e71312896ec55
MD5 d65af4aea514a1a2fcfcfd75b6107140
BLAKE2b-256 840eb94ddbe793663aecfe146e597c4f53f7631e6a44583c634e36261656896b

See more details on using hashes here.

File details

Details for the file pankmer-0.10.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pankmer-0.10.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 72b557f0ebbcbbe16bd68d881fb2d6b798cf4e2dc38701a605802816355ee4c2
MD5 e00d2fab9de682f4aa213683d2026930
BLAKE2b-256 a8feb6abc036b979cea3b46a26377a33002de08159d5003699221cbea9ad0c23

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page