Skip to main content

Generate a PanGenome given a set of genomes

Project description

Primary contact: Anthony Aylward, aaylward@salk.edu

PanKmer

k-mer based and reference-free pangenome analysis. See the quickstart below, or read the documentation.

Installation

In a conda environment

First create an environment that includes all dependencies:

conda create -c conda-forge -c bioconda -n pankmer rust python \
  biopython seaborn urllib3 python-newick pyfaidx gff2bed upsetplot \
  pybedtools cython more-itertools

Then install PanKmer with pip:

conda activate pankmer
pip install pankmer

With pip

PanKmer is built with Rust, so you will need to install it if you have not already done so. Then you can install PanKmer with pip:

pip install pankmer

Check installation

Check that the installation was successful by running:

pankmer --version

Tutorial

Download example dataset

The download-example subcommand will download a small example dataset of Chr19 sequences from S. polyrhiza.

pankmer download-example -d .

After running this command the directory PanKmer_example_Sp_Chr19/ will be present in the working directory. It contains FASTA files representing Chr19 from three genomes, and GFF files giving their gene annotations.

ls PanKmer_example_Sp_Chr19/*
PanKmer_example_Sp_Chr19/README.md

PanKmer_example_Sp_Chr19/Sp_Chr19_features:
Sp9509_oxford_v3_Chr19.gff3.gz Sp9512_a02_genes_Chr19.gff3.gz

PanKmer_example_Sp_Chr19/Sp_Chr19_genomes:
Sp7498_HiC_Chr19.fasta.gz Sp9509_oxford_v3_Chr19.fasta.gz Sp9512_a02_genome_Chr19.fasta.gz

To get started, navigate to the downloaded directory.

cd PanKmer_example_Sp_Chr19/

Build a k-mer index

The k-mer index is a table tracking presence or absence of k-mers in the set of input genomes. To build an index, use the index subcommand and provide a directory containing the input genomes.

pankmer index -g Sp_Chr19_genomes/ -o Sp_Chr19_index.tar

After completion, the index will be present as a tar file Sp_Chr19_index.tar.

tar -tvf Sp_Chr19_index.tar
Sp_Chr19_index/
Sp_Chr19_index/kmers.b.gz
Sp_Chr19_index/metadata.json
Sp_Chr19_index/scores.b.gz

Note

The input genomes argument proided with the -g flag can be a directory, a tar archive, or a space-separated list of FASTA files.

If the output argument provided with the -o flag ends with .tar, then the index will be written as a tar archive. Otherwise it will be written as a directory.

Create an adjacency matrix

A useful application of the k-mer index is to generate an adjacency matrix. This is a table of k-mer similarity values for each pair of genomes in the index. We can generate one using the adj-matrix subcommand, which will produce a CSV or TSV file containing the matrix.

pankmer adj-matrix -i Sp_Chr19_index.tar -o Sp_Chr19_adj_matrix.csv
pankmer adj-matrix -i Sp_Chr19_index.tar -o Sp_Chr19_adj_matrix.tsv

Note

The input index argument proided with the -i flag can be tar archive or a directory.

Plot a clustered heatmap

To visualize the adjacency matrix, we can plot a clustered heatmap of the adjacency values. In this case we use the Jaccard similarity metric for pairwise comparisons between genomes:

pankmer clustermap -i Sp_Chr19_adj_matrix.csv \
  -o Sp_Chr19_adj_matrix.svg \
  --metric jaccard \
  --width 6.5 \
  --height 6.5

example heatmap

Generate a gene variability heatmap

Generate a heatmap showing variability of genes across genomes. The following command uses the --n-features option to limit analysis to the first two genes from each input GFF3 file. The resulting image shows the level of variability observed across genes from each genome.

pankmer reg_heatmap -i Sp_Chr19_index/ \
  -r Sp_Chr19_genomes/Sp9509_oxford_v3_Chr19.fasta.gz Sp_Chr19_genomes/Sp9512_a02_genome_Chr19.fasta.gz \
  -f Sp_Chr19_features/Sp9509_oxford_v3_Chr19.gff3.gz Sp_Chr19_features/Sp9512_a02_genes_Chr19.gff3.gz \
  -o Sp_Chr19_gene_var.png \
  --n-features 2 \
  --height 3

example heatmap

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pankmer-0.13.1.tar.gz (55.6 kB view details)

Uploaded Source

Built Distribution

pankmer-0.13.1-cp310-cp310-macosx_10_7_x86_64.whl (626.0 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

File details

Details for the file pankmer-0.13.1.tar.gz.

File metadata

  • Download URL: pankmer-0.13.1.tar.gz
  • Upload date:
  • Size: 55.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for pankmer-0.13.1.tar.gz
Algorithm Hash digest
SHA256 742af9500e749c302cefc4035d46579bf338af98b994c02f9ceaae08ce891c33
MD5 35cf64c73e9156f1a01ae24e0f337fac
BLAKE2b-256 8209f3a7856344bdcae0629e5df056668c4255d73633eeb38861a316e29c5db6

See more details on using hashes here.

File details

Details for the file pankmer-0.13.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pankmer-0.13.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6ab94f243510f848dde30654a67a12a2e9d387bb859b5602077680ba21e1d241
MD5 16bd4f5f723cfd3f27f28681dc057fb1
BLAKE2b-256 b29e9155a84f353ecdb9d5de166fe721bd8884ecdf127e112de11b8de081d404

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page