Skip to main content

panns_AT_inference: audio tagging inference toolbox

Project description

PANNs AT (Audio Tagging) inference

panns_AT_inference provides an easy to use Python interface for audio tagging. The audio tagging models are trained from PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition: https://github.com/qiuqiangkong/audioset_tagging_cnn

This is a forked repository/project w. the Top-3 models (see References)

Installation

PyTorch>=1.0 is required.

$ pip install panns_AT_inference

Usage

$ python3 example.py

For example:

import librosa
import panns_AT_inference
from panns_AT_inference import AudioTagging, labels

audio_path = 'examples/R9_ZSCveAHg_7s.wav'
(audio, _) = librosa.core.load(audio_path, sr=32000, mono=True)
audio = audio[None, :]  # (batch_size, segment_samples)

print('------ Audio tagging ------')
at = AudioTagging(model_name=None, device='cuda')
(clipwise_output, embedding) = at.inference(audio)

Results

------ Audio tagging ------
Checkpoint path: /root/panns_data/Cnn14_mAP=0.431.pth
GPU number: 1
Speech: 0.893
Telephone bell ringing: 0.754
Inside, small room: 0.235
Telephone: 0.183
Music: 0.092
Ringtone: 0.047
Inside, large room or hall: 0.028
Alarm: 0.014
Animal: 0.009
Vehicle: 0.008

References

[1] Kong, Qiuqiang, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D. Plumbley. "PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition." arXiv preprint arXiv:1912.10211 (2019).

[2]

@article{9229505,
  author={Kong, Qiuqiang and Cao, Yin and Iqbal, Turab and Wang, Yuxuan and Wang, Wenwu and Plumbley, Mark D.},
  journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing}, 
  title={PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition}, 
  year={2020},
  volume={28},
  number={},
  pages={2880 -- 2894},
  doi={10.1109/TASLP.2020.3030497}
  }

[3] Official GitHub repository: https://github.com/qiuqiangkong/audioset_tagging_cnn , https://github.com/qiuqiangkong/panns_inference

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

panns_AT_inference-0.1.4.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

panns_AT_inference-0.1.4-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file panns_AT_inference-0.1.4.tar.gz.

File metadata

  • Download URL: panns_AT_inference-0.1.4.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.9

File hashes

Hashes for panns_AT_inference-0.1.4.tar.gz
Algorithm Hash digest
SHA256 3b3520906647ac20c212208718645cd2f149e6b57200174a97e3d74599318c19
MD5 485c1c789cdef956efd614579344701c
BLAKE2b-256 3332c401f6af87924ee6114ef44d9b1d1e797b3339d544acf3ff6187a54c49ba

See more details on using hashes here.

File details

Details for the file panns_AT_inference-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for panns_AT_inference-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 486c0f359cb4eada3a30faccd1528dfd585537bae9e0e66f240175d2812c7ca5
MD5 36be173e13c1fd363747dd8c73c27abc
BLAKE2b-256 6692e5077b0120029e33d100489ac603a35548ddf99a57fa1a6751a45a171e8e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page