Skip to main content

panns_inference: audio tagging and sound event detection inference toolbox

Project description

PANNs inferece

panns_inference provides an easy to use Python interface for audio tagging and sound event detection. The audio tagging and sound event detection models are trained from PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition: https://github.com/qiuqiangkong/audioset_tagging_cnn

Installation

PyTorch>=1.0 is required.

$ pip install panns-inference

Usage

$ python3 example.py

For example:

import librosa
import panns_inference
from panns_inference import AudioTagging, SoundEventDetection, labels

audio_path = 'examples/R9_ZSCveAHg_7s.wav'
(audio, _) = librosa.core.load(audio_path, sr=32000, mono=True)
audio = audio[None, :]  # (batch_size, segment_samples)

print('------ Audio tagging ------')
at = AudioTagging(device='cuda')
(clipwise_output, embedding) = at.inference(audio)

print('------ Sound event detection ------')
sed = SoundEventDetection(device='cuda')
framewise_output = sed.inference(audio)

Results

------ Audio tagging ------
Checkpoint path: /root/panns_data/Cnn14_mAP=0.431.pth
GPU number: 1
Speech: 0.893
Telephone bell ringing: 0.754
Inside, small room: 0.235
Telephone: 0.183
Music: 0.092
Ringtone: 0.047
Inside, large room or hall: 0.028
Alarm: 0.014
Animal: 0.009
Vehicle: 0.008
------ Sound event detection ------
Checkpoint path: /root/panns_data/Cnn14_mAP=0.431.pth
GPU number: 1
Save fig to appendixes/sed_result.pdf

Sound event detection plot:

Cite

[1] Kong, Qiuqiang, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D. Plumbley. "PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition." arXiv preprint arXiv:1912.10211 (2019).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

panns-inference-0.0.3.tar.gz (2.2 kB view details)

Uploaded Source

Built Distribution

panns_inference-0.0.3-py3-none-any.whl (2.9 kB view details)

Uploaded Python 3

File details

Details for the file panns-inference-0.0.3.tar.gz.

File metadata

  • Download URL: panns-inference-0.0.3.tar.gz
  • Upload date:
  • Size: 2.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for panns-inference-0.0.3.tar.gz
Algorithm Hash digest
SHA256 07e7c5ed3eb10b0c68fdfbc706d06ea39996e8e67ef77bac4c7bdc7a1025b2b0
MD5 f787cd645f53a6393c2499d0ddeca363
BLAKE2b-256 a5e65fbde45b7e11ac8fbab91ac75030ff1cafdcf7c7294df94bb50b6887c919

See more details on using hashes here.

File details

Details for the file panns_inference-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: panns_inference-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 2.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for panns_inference-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 d22fea0b4559b664fe414b61e8026cac5baae1a17cb9140ee3e3bd853e85c181
MD5 ed03696ac7a537be5a8e133ee3fe8e60
BLAKE2b-256 9bf0a39260b22fab0cd97fa3b4915d3fd50f0023f9281ca04cda04e145bc5801

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page