Skip to main content

panns_inference: audio tagging and sound event detection inference toolbox

Project description

PANNs inferece

panns_inference provides an easy to use Python interface for audio tagging and sound event detection. The audio tagging and sound event detection models are trained from PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition: https://github.com/qiuqiangkong/audioset_tagging_cnn

Installation

PyTorch>=1.0 is required.

$ pip install panns-inference

Usage

$ python3 example.py

For example:

import librosa
import panns_inference
from panns_inference import AudioTagging, SoundEventDetection, labels

audio_path = 'examples/R9_ZSCveAHg_7s.wav'
(audio, _) = librosa.core.load(audio_path, sr=32000, mono=True)
audio = audio[None, :]  # (batch_size, segment_samples)

print('------ Audio tagging ------')
at = AudioTagging(device='cuda')
(clipwise_output, embedding) = at.inference(audio)

print('------ Sound event detection ------')
sed = SoundEventDetection(device='cuda')
framewise_output = sed.inference(audio)

Results

------ Audio tagging ------
Checkpoint path: /root/panns_data/Cnn14_mAP=0.431.pth
GPU number: 1
Speech: 0.893
Telephone bell ringing: 0.754
Inside, small room: 0.235
Telephone: 0.183
Music: 0.092
Ringtone: 0.047
Inside, large room or hall: 0.028
Alarm: 0.014
Animal: 0.009
Vehicle: 0.008
------ Sound event detection ------
Checkpoint path: /root/panns_data/Cnn14_mAP=0.431.pth
GPU number: 1
Save fig to appendixes/sed_result.pdf

Sound event detection plot:

Cite

[1] Kong, Qiuqiang, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D. Plumbley. "PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition." arXiv preprint arXiv:1912.10211 (2019).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

panns-inference-0.0.5.tar.gz (6.6 kB view details)

Uploaded Source

Built Distribution

panns_inference-0.0.5-py3-none-any.whl (7.8 kB view details)

Uploaded Python 3

File details

Details for the file panns-inference-0.0.5.tar.gz.

File metadata

  • Download URL: panns-inference-0.0.5.tar.gz
  • Upload date:
  • Size: 6.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for panns-inference-0.0.5.tar.gz
Algorithm Hash digest
SHA256 3949db9f9105137c645cc06978bbee8954afe2e305ca81b8b221e600213fb9cb
MD5 c9bb404945488005c50e2a8fd0da4a79
BLAKE2b-256 5ab1576a0be758fd2ad463b6d998960b868771bf8b2ad609a77ade77206dd71e

See more details on using hashes here.

File details

Details for the file panns_inference-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: panns_inference-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 7.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for panns_inference-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 4b9b410433327bba1aaf67ef9870fd2fed5777cc11f43c56a44e9140507b5c62
MD5 a942316c5b97cd6863a43d0c629e35e8
BLAKE2b-256 dcda62b85c561d87960a6ff5e96c46cdefe5e74a8213c7a3ee34a0d54a4394e1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page