Map Reduce for Notebooks
Project description
Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.
The goals for Papermill are:
Parametrizing notebooks
Executing and collecting metrics across the notebooks
Summarizing collections of notebooks
Installation
pip install papermill
Usage
Parameterizing a notebook.
### template.ipynb
# This cell has a "parameters" tag. These values will be overwritten by Papermill.
alpha = 0.5
ratio = 0.1
Recording values to be saved with the notebook.
### template.ipynb
import random
import papermill as pm
rand_value = random.randint(1, 10)
pm.record("random_value", rand_value)
pm.record("foo", "bar")
Displaying outputs to be saved with the notebook.
### template.ipynb
# Import plt and turn off interactive plotting to avoid double plotting.
import papermill as pm
import matplotlib.pyplot as plt; plt.ioff()
from ggplot import mpg
f = plt.figure()
plt.hist('cty', bins=12, data=mpg)
pm.display('matplotlib_hist', f)
Executing a parameterized Jupyter notebook
import papermill as pm
pm.execute_notebook(
notebook="template.ipynb",
output="output.ipynb",
params=dict(alpha=0.1, ratio=0.001)
)
Analyzing a single notebook
### summary.ipynb
import papermill as pm
nb = pm.read_notebook('output.ipynb')
nb.dataframe.head()
# Show named plot from 'output.ipynb'
nb.display_output('matplotlib_hist')
Analyzing a collection of notebooks
### summary.ipynb
import papermill as pm
nbs = pm.read_notebooks('/path/to/results/')
# Show named plot from 'output1.ipynb'
nbs.display_output('output1.ipynb', 'matplotlib_hist')
# Dataframe for all notebooks in collection
df = nbs.dataframe
df.head()
# Show histograms from notebooks with the highest random value.
pivoted_df = df.pivot('key', 'name', 'value').sort_values(by='name')
pivoted_df.head()
nbs.display_output(pivoted_df[:3], 'matplotlib_hist')
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
papermill-0.6.tar.gz
(23.5 kB
view hashes)
Built Distribution
papermill-0.6-py2-none-any.whl
(10.3 kB
view hashes)