Skip to main content

Python client for paperswithcode.com API.

Project description

paperswithcode.com API client

This is a client for PapersWithCode read/write API.

The API is completely covered by the client and it wraps all the API models into python objects and communicates with the API by getting and passing those objects from and to the api client.

Documentation can be found on the ReadTheDocs website.

It is published to the Python Package Index and can be installed by simply calling pip install paperswithcode-client.

Quick usage example

To install:

pip install paperswithcode-client

To list papers indexed on Papers with Code:

from paperswithcode import PapersWithCodeClient

client = PapersWithCodeClient()
papers = client.paper_list()
print(papers.results[0])
print(papers.next_page)

For full docs please see our ReadTheDocs page.

How to mirror your competition

Papers with Code offers a mirroring service for ongoing competitions that allows competition administrators to automatically upload the results to Papers with Code using an API.

To use the API in the write mode you'll need to first obtain an API token.

Using the API token you'll be able to use the client in write mode:

from paperswithcode import PapersWithCodeClient

client = PapersWithCodeClient(token="your_secret_api_token")

To mirror a live competition, you'll need to make sure the corresponding task (e.g. "Image Classification") exists on Papers with Code. You can use the search to check if it exists, and if it doesn't, you can add a new task on the Task addition page.

If you cannot find your dataset on the website, you can create it with the API like this:

from paperswithcode.models.dataset import *
client.dataset_add(
    DatasetCreateRequest(
        name="VeryTinyImageNet",
    )
)

Now we are ready to programatically create the competition on Papers with Code. Here is an example of how we would do this on a fictional VeryTinyImageNet dataset.

from paperswithcode import PapersWithCodeClient
from paperswithcode.models.evaluation.synchronize import *

client = PapersWithCodeClient(token="your_secret_api_token")

r = EvaluationTableSyncRequest(
    task="Image Classification",
    dataset="VeryTinyImageNet",
    description="Optional description of your challenge in markdown format",
    metrics=[
        MetricSyncRequest(
            name="Top 1 Accuracy",
            is_loss=False,
        ),
        MetricSyncRequest(
            name="Top 5 Accuracy",
            is_loss=False,
        )
    ],
    results=[
        ResultSyncRequest(
            metrics={
                "Top 1 Accuracy": "85",
                "Top 5 Accuracy": "95"
            },
            paper="",
            methodology="My Unpublished Model Name",
            external_id="competition-submission-id-4321",
            evaluated_on="2020-11-20",
            external_source_url="https://my.competition.com/leaderboard/entry1"
        ),
        ResultSyncRequest(
            metrics={
                "Top 1 Accuracy": "75",
                "Top 5 Accuracy": "81"
            },
            paper="https://arxiv.org/abs/1512.03385",
            methodology="ResNet-50 (baseline)",
            external_id="competition-submission-id-1123",
            evaluated_on="2020-09-20",
            external_source_url="https://my.competition.com/leaderboard/entry2"
        )
    ]
)

client.evaluation_synchronize(r)

This is going to add two entries to the leaderboard, a ResNet-50 baseline that is referenced by the provided arXiv paper link, and an unpublished entry for model My Unpublished Model Name.

To decompose it a bit more:

metrics=[
    MetricSyncRequest(
        name="Top 1 Accuracy",
        is_loss=False,
    ),
    MetricSyncRequest(
        name="Top 5 Accuracy",
        is_loss=False,
    )
],

This defines two global metrics that are going to be used in the leaderboard. The table will be ranked based on the first provided metric. The paramter is_loss indicates if the metric is a loss metric, i.e. if smaller-is-better. Since in this case both are accuracy metric where higher-is-better, we set is_loss=False which will produce the correct sorting order in the table.

An individual row in the leaderboard is represented by:

ResultSyncRequest(
    metrics={
        "Top 1 Accuracy": "85",
        "Top 5 Accuracy": "95"
    },
    paper="",
    methodology="My Unpublished Model Name",
    external_id="competition-submission-id-4321",
    evaluated_on="2020-11-20",
    external_source_url="https://my.competition.com/leaderboard/entry1"
)

Metrics is simply a dictionary of metric values for each of the global metrics. The paper parameter can be a link to an arXiv paper, conference paper, or a paper page on Papers with Code. Any code that's associated with the paper will be linked automatically. The methodology parameter should contain the model name that is informative to the reader. external_id is your ID of this submission - this ID should be unqiue and is used when you make repeated calls to merge results if they changed. evaluated_on is the date in YYYY-MM-DD format on which the method was evaluated on - we use this to create progress graphs. Finally, external_source_url is the URL to your website, ideally linking back to this individual entry. This will be linked in the "Result" column of the leaderboard and will enable users to navigate back to your website.

Finally, this line of code:

client.evaluation_synchronize(r)

This will execute the request on our API and will return you the ID of your leaderboard on Papers with Code. You can then access it by going to https://paperswithcode.com/sota/<your_leaderboard_id> or find it using the site search.

To keep your Papers with Code leaderboard in sync, you can simply re-post all the entries in your competition on regular intervals. If a row already exists, it will be merged and no duplicates will be created.

For in-depth API docs please refer to our ReadTheDocs page.

By using the API you agree that any competition data you submit will be licenced under CC-BY-SA 4.0.

If you need any help contact us on hello@paperswithcode.com.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

paperswithcode-client-0.1.3.tar.gz (13.8 kB view details)

Uploaded Source

Built Distribution

paperswithcode_client-0.1.3-py3-none-any.whl (22.4 kB view details)

Uploaded Python 3

File details

Details for the file paperswithcode-client-0.1.3.tar.gz.

File metadata

  • Download URL: paperswithcode-client-0.1.3.tar.gz
  • Upload date:
  • Size: 13.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.4

File hashes

Hashes for paperswithcode-client-0.1.3.tar.gz
Algorithm Hash digest
SHA256 1aba9f88813e3602351041741e65cd669c8ca3ae00d459c0577f618d2872fa80
MD5 2e8c1a1c33b82c2c42788b8d1533eae8
BLAKE2b-256 efca5183b2ef536d444a5d008a35f9310e45172e8bfa9dbf4eddfa34bf24a875

See more details on using hashes here.

File details

Details for the file paperswithcode_client-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: paperswithcode_client-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 22.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.4

File hashes

Hashes for paperswithcode_client-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 0a9bc8b6c7d040e8d932f21af825d11affc09fb8370ef5e4a9d982ac22f9bba2
MD5 1e883b1e6d5aa14fba681082f0429756
BLAKE2b-256 9bd998eedb886c02bb42d863188d828658e1e48d11dc7939d7a5dc26c3492f0c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page