Skip to main content

Paprika is a python library that reduces boilerplate. Heavily inspired by Project Lombok.

Project description

Paprika is a python library that reduces boilerplate. Heavily inspired by Project Lombok.

Installation

paprika is available on PyPi.

$ pip install paprika

Usage

paprika is a decorator-only library and all decorators are exposed at the top-level of the module. If you want to use shorthand notation (i.e. @data), you can import all decorators as follows:

from paprika import *

Alternatively, you can opt to use the longhand notation (i.e. @paprika.data) by importing paprika as follows:

import paprika

Features & Examples

@to_string

The @to_string decorator automatically overrides __str__

Python

class Person:
    def __init__(self, name: str, age: int):
        self.name = name
        self.age = age

    def __str__(self):
        return f"{self.__name__}@[name={self.name}, age={self.age}]"

Python with paprika

@to_string
class Person:
    def __init__(self, name: str, age: int):
        self.name = name
        self.age = age

@equals_and_hashcode

The @equals_and_hashcode decorator automatically overrides __eq__ and __hash__

Python

class Person:
    def __init__(self, name: str, age: int):
        self.name = name
        self.age = age

    def __eq__(self, other):
        return (self.__class__ == other.__class__
                and
                self.__dict__ == other.__dict__)

    def __hash__(self):
        return hash((self.name, self.age))

Python with paprika

@equals_and_hashcode
class Person:
    def __init__(self, name: str, age: int):
        self.name = name
        self.age = age

@data

The @data decorator creates a dataclass by combining @to_string and @equals_and_hashcode and automatically creating a constructor!

Python

class Person:
    def __init__(self, name: str, age: int):
        self.name = name
        self.age = age

    def __str__(self):
        return f"{self.__name__}@[name={self.name}, age={self.age}]"

    def __eq__(self, other):
        return (self.__class__ == other.__class__
                and
                self.__dict__ == other.__dict__)

    def __hash__(self):
        return hash((self.name, self.age))

Python with paprika

@data
class Person:
    name: str
    age: int

Footnote on @data and NonNull

paprika exposes a NonNull generic type that can be used in conjunction with the @data decorator to enforce that certain arguments passed to the constructor are not null. The following snippet will raise a ValueError:

@data
class Person:
    name: NonNull[str]
    age: int


p = Person(name=None, age=42)  # ValueError ❌

@singleton

The @singleton decorator can be used to enforce that a class only gets instantiated once within the lifetime of a program. Any subsequent instantiation will return the original instance.

@singleton
class Person:
    def __init__(self, name: str, age: int):
        self.name = name
        self.age = age


p1 = Person(name="Rayan", age=19)
p2 = Person()
print(p1 == p2 and p1 is p2)  # True ✅

@singleton can be seamlessly combined with @data!

@singleton
@data
class Person:
    name: str
    age: int


p1 = Person(name="Rayan", age=19)
p2 = Person()
print(p1 == p2 and p1 is p2)  # True ✅

☠️ Important note on combining @data and @singleton ☠️

When combining @singleton with @data, @singleton should come before @data. Combining them the other way around will work in most cases but is not thoroughly tested and relies on assumptions that might not hold.


@threaded

The @threaded decorator will run the decorated function in a thread by submitting it to a ThreadPoolExecutor. When the decorated function is called, it will immediately return a Future object. The result can be extracted by calling .result() on that Future

@threaded
def waste_time(sleep_time):
    thread_name = threading.current_thread().name
    time.sleep(sleep_time)
    print(f"{thread_name} woke up after {sleep_time}s!")
    return 42


t1 = waste_time(5)
t2 = waste_time(2)
print(t1)  # <Future at 0x104130a90 state=running>
print(t1.result())  # 42
ThreadPoolExecutor-0_1 woke up after 2s!
ThreadPoolExecutor-0_0 woke up after 5s!

@repeat

The @repeat decorator will run the decorated function consecutively, as many times as specified.

@repeat(n=5)
def hello_world():
    print("Hello world!")


hello_world()
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!

@timeit

The @timeit decorator times the total execution time of the decorated function. It uses a timer::perf_timer by default but that can be replaced by any object of type Callable[None, int].

def time_waster1():
    time.sleep(2)

def time_waster2():
    time.sleep(5)

@timeit
def test_timeit():
    time_waster1()
    time_waster2()
test_timeit executed in 7.002189894999999 seconds

Here's how you can replace the default timer:

@timeit(timer: lambda: 0) # Or something actually useful like time.time()
def test_timeit():
    time_waster1()
    time_waster2()
test_timeit executed in 0 seconds

@access_counter

The @access_counter displays a summary of how many times each of the structures that are passed to the decorated function are accessed (number of reads and number of writes).

@access_counter
def test_access_counter(list, dict, person, tuple):
    for i in range(500):
        list[0] = dict["key"]
        dict["key"] = person.age
        person.age = tuple[0]


test_access_counter([1, 2, 3, 4, 5], {"key": 0}, Person(name="Rayan", age=19),
                    (0, 0))
data access summary for function: test
+------------+----------+-----------+
| Arg Name   |   nReads |   nWrites |
+============+==========+===========+
| list       |        0 |       500 |
+------------+----------+-----------+
| dict       |      500 |       500 |
+------------+----------+-----------+
| person     |      500 |       500 |
+------------+----------+-----------+
| tuple      |      500 |         0 |
+------------+----------+-----------+

@hotspots

The @hotspots automatically runs cProfiler on the decorated function and display the top_n (default = 10) most expensive function calls sorted by cumulative time taken (this metric will be customisable in the future). The sample error can be reduced by using a higher n_runs (default = 1) parameter.

def time_waster1():
    time.sleep(2)


def time_waster2():
    time.sleep(5)


@hotspots(top_n=5, n_runs=2)  # You can also do just @hotspots
def test_hotspots():
    time_waster1()
    time_waster2()


test_hotspots()
   11 function calls in 14.007 seconds

   Ordered by: cumulative time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        2    0.000    0.000   14.007    7.004 main.py:27(test_hot)
        4   14.007    3.502   14.007    3.502 {built-in method time.sleep}
        2    0.000    0.000   10.004    5.002 main.py:23(time_waster2)
        2    0.000    0.000    4.003    2.002 main.py:19(time_waster1)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

@profile

The @profile decorator is simply syntatic sugar that allows to perform both hotspot analysis and data access analysis. Under the hood, it simply uses @access_counter followed by @hotspots.


Contributing

Encountered a bug? Have an idea for a new feature? This project is open to all sorts of contribution! Feel free to head to the Issues tab and describe your request!

Authors

See also the list of contributors who participated in this project.

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

paprika-1.1.0.tar.gz (7.9 kB view details)

Uploaded Source

Built Distribution

paprika-1.1.0-py3-none-any.whl (6.6 kB view details)

Uploaded Python 3

File details

Details for the file paprika-1.1.0.tar.gz.

File metadata

  • Download URL: paprika-1.1.0.tar.gz
  • Upload date:
  • Size: 7.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.6 Darwin/20.2.0

File hashes

Hashes for paprika-1.1.0.tar.gz
Algorithm Hash digest
SHA256 79eb3627a058457f6f5200681c118a33cb7a7d4ed347f8d080af2acb1b90d277
MD5 60c8c7bdd76c7dc7b98f007ca1a760f2
BLAKE2b-256 5bc0debc2b4304f634e253ffccd879e6fc1cafe8aa51287e5da9b21558fc2a60

See more details on using hashes here.

File details

Details for the file paprika-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: paprika-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 6.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.6 Darwin/20.2.0

File hashes

Hashes for paprika-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 14b28672d01ebc073f2d2b5f3d7ac8ce76c0869b330191c6358db76ba621b4bc
MD5 5bae0d23cb68427bc7c8d976c743929e
BLAKE2b-256 2083d76e78e3c650f18cd96d50e7807af64f25ef42803c51c2de281ab9a18f38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page