Skip to main content

Paprika is a python library that reduces boilerplate. Heavily inspired by Project Lombok.

Project description

A plate filled with paprika spice Image courtesy of Anna Quaglia (Photographer)

Paprika

Paprika is a python library that reduces boilerplate. It is heavily inspired by Project Lombok.

Table of Contents

Installation

paprika is available on PyPi.

$ pip install paprika

Usage

paprika is a decorator-only library and all decorators are exposed at the top-level of the module. If you want to use shorthand notation (i.e. @data), you can import all decorators as follows:

from paprika import *

Alternatively, you can opt to use the longhand notation (i.e. @paprika.data) by importing paprika as follows:

import paprika

Features and Examples

Object-oriented decorators

@to_string

The @to_string decorator automatically overrides __str__

Python

class Person:
    def __init__(self, name: str, age: int):
        self.name = name
        self.age = age

    def __str__(self):
        return f"{self.__name__}@[name={self.name}, age={self.age}]"

Python with paprika

@to_string
class Person:
    def __init__(self, name: str, age: int):
        self.name = name
        self.age = age

@equals_and_hashcode

The @equals_and_hashcode decorator automatically overrides __eq__ and __hash__

Python

class Person:
    def __init__(self, name: str, age: int):
        self.name = name
        self.age = age

    def __eq__(self, other):
        return (self.__class__ == other.__class__
                and
                self.__dict__ == other.__dict__)

    def __hash__(self):
        return hash((self.name, self.age))

Python with paprika

@equals_and_hashcode
class Person:
    def __init__(self, name: str, age: int):
        self.name = name
        self.age = age

@data

The @data decorator creates a dataclass by combining @to_string and @equals_and_hashcode and automatically creating a constructor!

Python

class Person:
    def __init__(self, name: str, age: int):
        self.name = name
        self.age = age

    def __str__(self):
        return f"{self.__name__}@[name={self.name}, age={self.age}]"

    def __eq__(self, other):
        return (self.__class__ == other.__class__
                and
                self.__dict__ == other.__dict__)

    def __hash__(self):
        return hash((self.name, self.age))

Python with paprika

@data
class Person:
    name: str
    age: int

On @data and NonNull

paprika exposes a NonNull generic type that can be used in conjunction with the @data decorator to enforce that certain arguments passed to the constructor are not null. The following snippet will raise a ValueError:

@data
class Person:
    name: NonNull[str]
    age: int

p = Person(name=None, age=42)  # ValueError ❌

@singleton

The @singleton decorator can be used to enforce that a class only gets instantiated once within the lifetime of a program. Any subsequent instantiation will return the original instance.

@singleton
class Person:
    def __init__(self, name: str, age: int):
        self.name = name
        self.age = age

p1 = Person(name="Rayan", age=19)
p2 = Person()
print(p1 == p2 and p1 is p2)  # True ✅

@singleton can be seamlessly combined with @data!

@singleton
@data
class Person:
    name: str
    age: int

p1 = Person(name="Rayan", age=19)
p2 = Person()
print(p1 == p2 and p1 is p2)  # True ✅

Important note on combining @data and @singleton

When combining @singleton with @data, @singleton should come before @data. Combining them the other way around will work in most cases but is not thoroughly tested and relies on assumptions that might not hold.

General utility decorators

@threaded

The @threaded decorator will run the decorated function in a thread by submitting it to a ThreadPoolExecutor. When the decorated function is called, it will immediately return a Future object. The result can be extracted by calling .result() on that Future

@threaded
def waste_time(sleep_time):
    thread_name = threading.current_thread().name
    time.sleep(sleep_time)
    print(f"{thread_name} woke up after {sleep_time}s!")
    return 42

t1 = waste_time(5)
t2 = waste_time(2)

print(t1)           # <Future at 0x104130a90 state=running>
print(t1.result())  # 42
ThreadPoolExecutor-0_1 woke up after 2s!
ThreadPoolExecutor-0_0 woke up after 5s!

@repeat

The @repeat decorator will run the decorated function consecutively, as many times as specified.

@repeat(n=5)
def hello_world():
    print("Hello world!")

hello_world()
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!

Benchmark decorators

timeit

The @timeit decorator times the total execution time of the decorated function. It uses a timer::perf_timer by default but that can be replaced by any object of type Callable[None, int].

def time_waster1():
    time.sleep(2)

def time_waster2():
    time.sleep(5)

@timeit
def test_timeit():
    time_waster1()
    time_waster2()
test_timeit executed in 7.002189894999999 seconds

Here's how you can replace the default timer:

@timeit(timer: lambda: 0) # Or something actually useful like time.time()
def test_timeit():
    time_waster1()
    time_waster2()
test_timeit executed in 0 seconds

@access_counter

The @access_counter displays a summary of how many times each of the structures that are passed to the decorated function are accessed (number of reads and number of writes).

@access_counter
def test_access_counter(list, dict, person, tuple):
    for i in range(500):
        list[0] = dict["key"]
        dict["key"] = person.age
        person.age = tuple[0]


test_access_counter([1, 2, 3, 4, 5], {"key": 0}, Person(name="Rayan", age=19),
                    (0, 0))
data access summary for function: test
+------------+----------+-----------+
| Arg Name   |   nReads |   nWrites |
+============+==========+===========+
| list       |        0 |       500 |
+------------+----------+-----------+
| dict       |      500 |       500 |
+------------+----------+-----------+
| person     |      500 |       500 |
+------------+----------+-----------+
| tuple      |      500 |         0 |
+------------+----------+-----------+

@hotspots

The @hotspots automatically runs cProfiler on the decorated function and display the top_n (default = 10) most expensive function calls sorted by cumulative time taken (this metric will be customisable in the future). The sample error can be reduced by using a higher n_runs (default = 1) parameter.

def time_waster1():
    time.sleep(2)

def time_waster2():
    time.sleep(5)

@hotspots(top_n=5, n_runs=2)  # You can also do just @hotspots
def test_hotspots():
    time_waster1()
    time_waster2()

test_hotspots()
   11 function calls in 14.007 seconds

   Ordered by: cumulative time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        2    0.000    0.000   14.007    7.004 main.py:27(test_hot)
        4   14.007    3.502   14.007    3.502 {built-in method time.sleep}
        2    0.000    0.000   10.004    5.002 main.py:23(time_waster2)
        2    0.000    0.000    4.003    2.002 main.py:19(time_waster1)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

@profile

The @profile decorator is simply syntatic sugar that allows to perform both hotspot analysis and data access analysis. Under the hood, it simply uses @access_counter followed by @hotspots.

Error-handling decorators

@catch

The @catch decorator can be used to wrap a function inside a try/catch block. @catch expects to receive in the exceptions argument at least one exception that we want to catch.

If no exception is provided, @catch will by default catch all exceptions ( excluding SystemExit, KeyboardInterrupt and GeneratorExit since they do not subclass the generic Exception class).

@catch can take a custom exception handler as a parameter. If no handler is supplied, a stack trace is logged to stderr and the program will continue executing.

@catch(exception=ValueError)
def test_catch1():
    raise ValueError

@catch(exception=[EOFError, KeyError])
def test_catch2():
    raise ValueError

test_catch1()
print("Still alive!")  # This should get printed since we're catching the ValueError.

test_catch2()
print("Still alive?")  # This will not get printed since we're not catching ValueError in this case.
Traceback (most recent call last):
  File "/Users/rayan/Desktop/paprika/paprika/__init__.py", line 292, in wrapper_catch
    return func(*args, **kwargs)
  File "/Users/rayan/Desktop/paprika/main.py", line 29, in test_exception1
    raise ValueError
ValueError

Still alive!

Traceback (most recent call last):
  File "/Users/rayan/Desktop/paprika/main.py", line 40, in <module>
    test_exception2()
  File "/Users/rayan/Desktop/paprika/paprika/__init__.py", line 292, in wrapper_catch
    return func(*args, **kwargs)
  File "/Users/rayan/Desktop/paprika/main.py", line 37, in test_exception2
    raise ValueError
ValueError

Using a custom exception handler

If provided, a custom exception handler must be of type Callable[Exception, Generic[T]]. In other words, its signature must take one parameter of type Exception.

@catch(exception=ValueError,
       handler=lambda x: print(f"Ohno, a {repr(x)} was raised!"))
def test_custom_handler():
    raise ValueError

test_custom_handler()
Ohno, a ValueError() was raised!

@silent_catch

The @silent_catch decorator is very similar to the @catch decorator in its usage. It takes one or more exceptions but then simply catches them silently.

@silent_catch(exception=[ValueError, TypeError])
def test_silent_catch():
    raise TypeError

test_silent_catch()
print("Still alive!")
Still alive!

Contributing

Encountered a bug? Have an idea for a new feature? This project is open to all sorts of contribution! Feel free to head to the Issues tab and describe your request!

Authors

See also the list of contributors who participated in this project.

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

paprika-1.2.0.tar.gz (9.8 kB view details)

Uploaded Source

Built Distribution

paprika-1.2.0-py3-none-any.whl (7.9 kB view details)

Uploaded Python 3

File details

Details for the file paprika-1.2.0.tar.gz.

File metadata

  • Download URL: paprika-1.2.0.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.6 Darwin/20.2.0

File hashes

Hashes for paprika-1.2.0.tar.gz
Algorithm Hash digest
SHA256 68432387a744c405926edaa0f2d145796957c808b5c5a695c77f4a8cf419bf51
MD5 1fb9b987173e5f18f386dcb3e4ad2d2d
BLAKE2b-256 43ce141749879a8b31668bfba95785d82b4ad0e2719ab2f92946c589a1ccc52d

See more details on using hashes here.

File details

Details for the file paprika-1.2.0-py3-none-any.whl.

File metadata

  • Download URL: paprika-1.2.0-py3-none-any.whl
  • Upload date:
  • Size: 7.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.6 Darwin/20.2.0

File hashes

Hashes for paprika-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 47b21f9930a9cc485809fdb28bdc67f9c7b9dd908a0de99453ed32712579677f
MD5 fdcde6d4b51118d3737ba290a012d9f8
BLAKE2b-256 1c58ad5b50f520425f1a1bd1b1d13686ee2c2c147b45c0376f2c175c4db0503e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page