Parallel processing on pandas with progress bars
Project description
Parallel-pandas
Makes it easy to parallelize your calculations in pandas on all your CPUs.
Installation
pip install --upgrade parallel-pandas
Quickstart
import pandas as pd
import numpy as np
from parallel_pandas import ParallelPandas
#initialize parallel-pandas
ParallelPandas.initialize(n_cpu=16, split_factor=4, disable_pr_bar=True)
# create big DataFrame
df = pd.DataFrame(np.random.random((1_000_000, 100)))
# calculate multiple quantiles. Pandas only uses one core of CPU
%%timeit
res = df.quantile(q=[.25, .5, .95], axis=1)
3.66 s ± 31.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
#p_quantile is parallel analogue of quantile methods. Can use all cores of your CPU.
%%timeit
res = df.p_quantile(q=[.25, .5, .95], axis=1)
679 ms ± 10.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
As you can see the p_quantile
method is 5 times faster!
Usage
Under the hood, parallel-pandas works very simply. The Dataframe or Series is split into chunks along the first or second axis. Then these chunks are passed to a pool of processes or threads where the desired method is executed on each part. At the end, the parts are concatenated to get the final result.
When initializing parallel-pandas you can specify the following options:
n_cpu
- the number of cores of your CPU that you want to use (defaultNone
- use all cores of CPU)split_factor
- Affects the number of chunks into which the DataFrame/Series is split according to the formulachunks_number = split_factor*n_cpu
(default 1).show_vmem
- Shows a progress bar with available RAM (defaultFalse
)disable_pr_bar
- Disable the progress bar for parallel tasks (defaultFalse
)
For example
import pandas as pd
import numpy as np
from parallel_pandas import ParallelPandas
#initialize parallel-pandas
ParallelPandas.initialize(n_cpu=16, split_factor=4, disable_pr_bar=False)
# create big DataFrame
df = pd.DataFrame(np.random.random((1_000_000, 100)))
During initialization, we specified split_factor=4
and n_cpu = 16
, so the DataFrame will be split into 64 chunks (in the case of the describe
method, axis = 1) and the progress bar shows the progress for each chunk
You can parallelize any expression with pandas Dataframe. For example, let's do a z-score normalization of columns in a dataframe. Let's look at the execution time and memory consumption. Compare with synchronous execution and with Dask.DataFrame
import pandas as pd
import numpy as np
from parallel_pandas import ParallelPandas
import dask.dataframe as dd
from time import monotonic
#initialize parallel-pandas
ParallelPandas.initialize(n_cpu=16, split_factor=8, disable_pr_bar=True)
# create big DataFrame
df = pd.DataFrame(np.random.random((1_000_000, 1000)))
# create dask DataFrame
ddf = dd.from_pandas(df, npartitions=128)
start = monotonic()
res=(df-df.mean())/df.std()
print(f'synchronous z-score normalization time took: {monotonic()-start:.1f} s.')
synchronous z-score normalization time took: 21.7 s.
#parallel-pandas
start = monotonic()
res=(df-df.p_mean())/df.p_std()
print(f'parallel z-score normalization time took: {monotonic()-start:.1f} s.')
parallel z-score normalization time took: 11.7 s.
#dask dataframe
start = monotonic()
res=((ddf-ddf.mean())/ddf.std()).compute()
print(f'dask parallel z-score normalization time took: {monotonic()-start:.1f} s.')
dask parallel z-score normalization time took: 12.5 s.
Pay attention to memory consumption. parallel-pandas
and dask
use almost half as much RAM as pandas
For some methods parallel-pandas
is faster than dask.DataFrame
:
#dask
%%time
res = ddf.nunique().compute()
Wall time: 42.9 s
%%time
res = ddf.rolling(10).mean().compute()
Wall time: 19.1 s
#parallel-pandas
%%time
res = df.p_nunique()
Wall time: 12.9 s
%%time
res = df.rolling(10).p_mean()
Wall time: 12.5 s
API
Parallel counterparts for pandas Series methods
methods | parallel analogue | executor |
---|---|---|
pd.Series.apply() | pd.Series.p_apply() | threads / processes |
pd.Series.map() | pd.Series.p_map() | threads / processes |
Parallel counterparts for pandas SeriesGroupBy methods
methods | parallel analogue | executor |
---|---|---|
pd.SeriesGroupBy.apply() | pd.SeriesGroupBy.p_apply() | threads / processes |
Parallel counterparts for pandas Dataframe methods
methods | parallel analogue | executor |
---|---|---|
df.mean() | df.p_mean() | threads |
df.min() | df.p_min() | threads |
df.max() | df.p_max() | threads |
df.median() | df.p_max() | threads |
df.kurt() | df.p_kurt() | threads |
df.skew() | df.p_skew() | threads |
df.sum() | df.p_sum() | threads |
df.prod() | df.p_prod() | threads |
df.var() | df.p_var() | threads |
df.sem() | df.p_sem() | threads |
df.std() | df.p_std() | threads |
df.cummin() | df.p_cummin() | threads |
df.cumsum() | df.p_cumsum() | threads |
df.cummax() | df.p_cummax() | threads |
df.cumprod() | df.p_cumprod() | threads |
df.apply() | df.p_apply() | threads / processes |
df.applymap() | df.p_applymap() | processes |
df.replace() | df.p_replace() | threads |
df.describe() | df.p_describe() | threads |
df.nunique() | df.p_nunique() | threads / processes |
df.mad() | df.p_mad() | threads |
df.idxmin() | df.p_idxmin() | threads |
df.idxmax() | df.p_idxmax() | threads |
df.rank() | df.p_rank() | threads |
df.mode() | df.p_mode() | threads/processes |
df.agg() | df.p_agg() | threads/processes |
df.aggregate() | df.p_aggregate() | threads/processes |
df.quantile() | df.p_quantile() | threads/processes |
df.corr() | df.p_corr() | threads/processes |
Parallel counterparts for pandas DataframeGroupBy methods
methods | parallel analogue | executor |
---|---|---|
DataFrameGroupBy.apply() | DataFrameGroupBy.p_apply() | threads / processes |
Parallel counterparts for pandas window methods
Rolling
methods | parallel analogue | executor |
---|---|---|
pd.core.window.Rolling.apply() | pd.core.window.Rolling.p_apply() | threads / processes |
pd.core.window.Rolling.min() | pd.core.window.Rolling.p_min() | threads / processes |
pd.core.window.Rolling.max() | pd.core.window.Rolling.p_max() | threads / processes |
pd.core.window.Rolling.mean() | pd.core.window.Rolling.p_mean() | threads / processes |
pd.core.window.Rolling.sum() | pd.core.window.Rolling.p_sum() | threads / processes |
pd.core.window.Rolling.var() | pd.core.window.Rolling.p_var() | threads / processes |
pd.core.window.Rolling.sem() | pd.core.window.Rolling.p_sem() | threads / processes |
pd.core.window.Rolling.skew() | pd.core.window.Rolling.p_skew() | threads / processes |
pd.core.window.Rolling.kurt() | pd.core.window.Rolling.p_kurt() | threads / processes |
pd.core.window.Rolling.median() | pd.core.window.Rolling.p_median() | threads / processes |
pd.core.window.Rolling.quantile() | pd.core.window.Rolling.p_quantile() | threads / processes |
pd.core.window.Rolling.rank() | pd.core.window.Rolling.p_rank() | threads / processes |
pd.core.window.Rolling.agg() | pd.core.window.Rolling.p_agg() | threads / processes |
pd.core.window.Rolling.aggregate() | pd.core.window.Rolling.p_aggregate() | threads / processes |
Window
methods | parallel analogue | executor |
---|---|---|
pd.core.window.Window.mean() | pd.core.window.Window.p_mean() | threads / processes |
pd.core.window.Window.sum() | pd.core.window.Window.p_sum() | threads / processes |
pd.core.window.Window.var() | pd.core.window.Window.p_var() | threads / processes |
pd.core.window.Window.std() | pd.core.window.Window.p_std() | threads / processes |
RollingGroupby
methods | parallel analogue | executor |
---|---|---|
pd.core.window.RollingGroupby.apply() | pd.core.window.RollingGroupby.p_apply() | threads / processes |
pd.core.window.RollingGroupby.min() | pd.core.window.RollingGroupby.p_min() | threads / processes |
pd.core.window.RollingGroupby.max() | pd.core.window.RollingGroupby.p_max() | threads / processes |
pd.core.window.RollingGroupby.mean() | pd.core.window.RollingGroupby.p_mean() | threads / processes |
pd.core.window.RollingGroupby.sum() | pd.core.window.RollingGroupby.p_sum() | threads / processes |
pd.core.window.RollingGroupby.var() | pd.core.window.RollingGroupby.p_var() | threads / processes |
pd.core.window.RollingGroupby.sem() | pd.core.window.RollingGroupby.p_sem() | threads / processes |
pd.core.window.RollingGroupby.skew() | pd.core.window.RollingGroupby.p_skew() | threads / processes |
pd.core.window.RollingGroupby.kurt() | pd.core.window.RollingGroupby.p_kurt() | threads / processes |
pd.core.window.RollingGroupby.median() | pd.core.window.RollingGroupby.p_median() | threads / processes |
pd.core.window.RollingGroupby.quantile() | pd.core.window.RollingGroupby.p_quantile() | threads / processes |
pd.core.window.RollingGroupby.rank() | pd.core.window.RollingGroupby.p_rank() | threads / processes |
pd.core.window.RollingGroupby.agg() | pd.core.window.RollingGroupby.p_agg() | threads / processes |
pd.core.window.RollingGroupby.aggregate() | pd.core.window.RollingGroupby.p_aggregate() | threads / processes |
Expanding
methods | parallel analogue | executor |
---|---|---|
pd.core.window.Expanding.apply() | pd.core.window.Expanding.p_apply() | threads / processes |
pd.core.window.Expanding.min() | pd.core.window.Expanding.p_min() | threads / processes |
pd.core.window.Expanding.max() | pd.core.window.Expanding.p_max() | threads / processes |
pd.core.window.Expanding.mean() | pd.core.window.Expanding.p_mean() | threads / processes |
pd.core.window.Expanding.sum() | pd.core.window.Expanding.p_sum() | threads / processes |
pd.core.window.Expanding.var() | pd.core.window.Expanding.p_var() | threads / processes |
pd.core.window.Expanding.sem() | pd.core.window.Expanding.p_sem() | threads / processes |
pd.core.window.Expanding.skew() | pd.core.window.Expanding.p_skew() | threads / processes |
pd.core.window.Expanding.kurt() | pd.core.window.Expanding.p_kurt() | threads / processes |
pd.core.window.Expanding.median() | pd.core.window.Expanding.p_median() | threads / processes |
pd.core.window.Expanding.quantile() | pd.core.window.Expanding.p_quantile() | threads / processes |
pd.core.window.Expanding.rank() | pd.core.window.Expanding.p_rank() | threads / processes |
pd.core.window.Expanding.agg() | pd.core.window.Expanding.p_agg() | threads / processes |
pd.core.window.Expanding.aggregate() | pd.core.window.Expanding.p_aggregate() | threads / processes |
ExpandingGroupby
methods | parallel analogue | executor |
---|---|---|
pd.core.window.ExpandingGroupby.apply() | pd.core.window.ExpandingGroupby.p_apply() | threads / processes |
pd.core.window.ExpandingGroupby.min() | pd.core.window.ExpandingGroupby.p_min() | threads / processes |
pd.core.window.ExpandingGroupby.max() | pd.core.window.ExpandingGroupby.p_max() | threads / processes |
pd.core.window.ExpandingGroupby.mean() | pd.core.window.ExpandingGroupby.p_mean() | threads / processes |
pd.core.window.ExpandingGroupby.sum() | pd.core.window.ExpandingGroupby.p_sum() | threads / processes |
pd.core.window.ExpandingGroupby.var() | pd.core.window.ExpandingGroupby.p_var() | threads / processes |
pd.core.window.ExpandingGroupby.sem() | pd.core.window.ExpandingGroupby.p_sem() | threads / processes |
pd.core.window.ExpandingGroupby.skew() | pd.core.window.ExpandingGroupby.p_skew() | threads / processes |
pd.core.window.ExpandingGroupby.kurt() | pd.core.window.ExpandingGroupby.p_kurt() | threads / processes |
pd.core.window.ExpandingGroupby.median() | pd.core.window.ExpandingGroupby.p_median() | threads / processes |
pd.core.window.ExpandingGroupby.quantile() | pd.core.window.ExpandingGroupby.p_quantile() | threads / processes |
pd.core.window.ExpandingGroupby.rank() | pd.core.window.ExpandingGroupby.p_rank() | threads / processes |
pd.core.window.ExpandingGroupby.agg() | pd.core.window.ExpandingGroupby.p_agg() | threads / processes |
pd.core.window.ExpandingGroupby.aggregate() | pd.core.window.ExpandingGroupby.p_aggregate() | threads / processes |
ExponentialMovingWindow
methods | parallel analogue | executor |
---|---|---|
pd.core.window.ExponentialMovingWindow.mean() | pd.core.window.ExponentialMovingWindow.p_mean() | threads / processes |
pd.core.window.ExponentialMovingWindow.sum() | pd.core.window.ExponentialMovingWindow.p_sum() | threads / processes |
pd.core.window.ExponentialMovingWindow.var() | pd.core.window.ExponentialMovingWindow.p_var() | threads / processes |
pd.core.window.ExponentialMovingWindow.std() | pd.core.window.ExponentialMovingWindow.p_std() | threads / processes |
ExponentialMovingWindowGroupby
methods | parallel analogue | executor |
---|---|---|
pd.core.window.ExponentialMovingWindowGroupby.mean() | pd.core.window.ExponentialMovingWindowGroupby.p_mean() | threads / processes |
pd.core.window.ExponentialMovingWindowGroupby.sum() | pd.core.window.ExponentialMovingWindowGroupby.p_sum() | threads / processes |
pd.core.window.ExponentialMovingWindowGroupby.var() | pd.core.window.ExponentialMovingWindowGroupby.p_var() | threads / processes |
pd.core.window.ExponentialMovingWindowGroupby.std() | pd.core.window.ExponentialMovingWindowGroupby.p_std() | threads / processes |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file parallel_pandas-0.6.4.tar.gz
.
File metadata
- Download URL: parallel_pandas-0.6.4.tar.gz
- Upload date:
- Size: 20.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2a9a83f161adeb612483c7d68b555aa075d6327a2ab89fd5d06ff2965918b4fb |
|
MD5 | 3b31d1b8cc5eebd092eddd4445ca33d2 |
|
BLAKE2b-256 | 9cbf9d2a8ba2f10d1523268da79e5b874076a80d576827e4204c422880681f9d |
File details
Details for the file parallel_pandas-0.6.4-py3-none-any.whl
.
File metadata
- Download URL: parallel_pandas-0.6.4-py3-none-any.whl
- Upload date:
- Size: 21.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a96016c4756db3257c4c27718659dfcc6faff2a3a5382ed28ba3cefd00ba77e9 |
|
MD5 | 5a37bc1ff233c86e0389bb0390d6ed26 |
|
BLAKE2b-256 | 3822a01b09e8f34be4488d782d805e28b853a40b4117ce1e15304002fc882bc6 |