Parallel processing with progress bars
Project description
Parallelbar
Table of contents
Parallelbar displays the progress of tasks in the process pool for Pool class methods such as map
, starmap
(since 1.2 version), imap
and imap_unordered
. Parallelbar is based on the tqdm module and the standard python multiprocessing library.
Also, it is possible to handle exceptions that occur within a separate process, as well as set a timeout for the execution of a task by a process.
Installation
pip install parallelbar
or
pip install --user git+https://github.com/dubovikmaster/parallelbar.git
Usage
from parallelbar import progress_imap, progress_map, progress_imapu
from parallelbar.tools import cpu_bench, fibonacci
Let's create a list of 100 numbers and test progress_map
with default parameters on a toy function cpu_bench
:
tasks = range(10000)
%%time
list(map(cpu_bench, tasks))
Wall time: 52.6 s
Ok, by default this works on one core of my i7-9700F and it took 52 seconds. Let's parallelize the calculations for all 8 cores and look at the progress. This can be easily done by replacing standart function map with progress_map.
if __name__=='__main__':
progress_map(cpu_bench, tasks)
Core progress:
You can also easily use progress_imap and progress_imapu analogs of the imap and imap_unordered methods of the Pool() class
%%time
if __name__=='__main__':
tasks = [20 + i for i in range(15)]
result = progress_imap(fibonacci, tasks, chunk_size=1, core_progress=False)
Exception handling
You can handle exceptions and set timeouts for the execution of tasks by the process.
Consider the following toy example:
def foo(n):
if n==5 or n==17:
1/0
elif n==10:
time.sleep(2)
else:
time.sleep(1)
return n
if __name__=='__main__':
res = progress_map(foo, range(20), process_timeout=5, n_cpu=8)
As you can see, under the main progress bar, another progress bar has appeared that displays the number of tasks that ended unsuccessfully. At the same time, the main bar turned orange, as if signaling something went wrong
print(res)
[0, 1, 2, 3, 4, ZeroDivisionError('division by zero'), 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, ZeroDivisionError('division by zero'), 18, 19]
In the resulting array, we have exceptions in the corresponding places. Also, we can see the exception traceback:
print(res[5].traceback)
Traceback (most recent call last):
File "/home/padu/anaconda3/envs/work/lib/python3.9/site-packages/pebble/common.py", line 174, in process_execute
return function(*args, **kwargs)
File "/home/padu/anaconda3/envs/work/lib/python3.9/site-packages/parallelbar/parallelbar.py", line 48, in _process
result = func(task)
File "/tmp/ipykernel_70395/285585760.py", line 3, in foo
1/0
ZeroDivisionError: division by zero
From which concept at what place in the code the exception occurred. Let's add a timeout of 1.5 seconds for each process. If the process execution time exceeds 1.5 seconds, an appropriate exception will be raised and handled. In this case, the process will restart and continue to work (thanks to pebble)
if __name__=='__main__':
res = progress_map(foo, range(20), process_timeout=1.5, n_cpu=8)
print(res)
[0, 1, 2, 3, 4, ZeroDivisionError('division by zero'), 6, 7, 8, 9, 'function foo took longer than 1.5 s.',
11, 12, 13, 14, 15, 16, ZeroDivisionError('division by zero'), 18, 19]
Exception handling has also been added to methods progress_imap and progress_imapu.
Changelog
New in version 1.3
- added
maxtaskperchild
keyword parameter to theprogress_map/starmap/imap/imapu
function (default=None
)
New in version 1.2
- Added
progress_starmap
function. An extension of thestarmap
method of thePool
class. - Improved documentation.
New in version 1.1
- The
bar_step
keyword argument is no longer used and will be removed in a future version - Added
need_serialize
boolean keyword argument to theprogress_map/imap/imapu
function (defaultFalse
). Requires dill to be installed. IfTrue
the target function is serialized usingdill
library. Thus, as a target function, you can now use lambda functions, class methods and other callable objects thatpickle
cannot serialize - Added dynamic optimization of the progress bar refresh rate. This can significantly improve the performance of the
progress_map/imap/imapu
functions ror very long iterables and small execution time of one task by the objective function.
New in version 1.0
- The "ignore" value of the
error_behavior
key parameter is no longer supported. - Default value of key parameter
error_behavior
changed to "raise". - The pebble module is no longer used.
- Added key parameter
executor
in the functionsprogress_map
,progress_imap
andprogress_imapu
. Must be one of the values:- "threads" - use thread pool
- "processes" - use processes pool (default)
New in version 0.3.0
- The
error_behavior
keyword argument has been added to the progress_map, progress_imap and progress_imapu methods. Must be one of the values: "raise", "ignore", "coerce".- "raise" - raise an exception thrown in the process pool.
- "ignore" - ignore the exceptions that occur. Do not add anything to the result
- "coerce" - handle the exception. The result will include the value set by the parameter
set_error_value
(by default None - the traceback of the raised exception will be added to the result)
- The
set_error_value
keyword argument has been added to the progress_map, progress_imap and progress_imapu methods.
Example of usage
import time
import resource as rs
from parallelbar import progress_imap
def memory_limit(limit):
soft, hard = rs.getrlimit(rs.RLIMIT_AS)
rs.setrlimit(rs.RLIMIT_AS, (limit, hard))
def my_awesome_foo(n):
if n == 0:
s = 'a' * 10000000
elif n == 20:
time.sleep(100)
else:
time.sleep(1)
return n
if __name__ == '__main__':
tasks = range(30)
start = time.monotonic()
result = progress_imap(my_awesome_foo, tasks,
process_timeout=1.5,
initializer=memory_limit,
initargs=(100,),
n_cpu=4,
error_behavior='coerce',
set_error_value=None,
)
print(f'time took: {time.monotonic() - start:.1f}')
print(result)
time took: 8.2
[MemoryError(), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, TimeoutError('function "my_awesome_foo" took longer than 1.5 s.'), 21, 22, 23, 24, 25, 26, 27, 28, 29]
Set NaN instead of tracebacks to the result of the pool operation:
if __name__ == '__main__':
tasks = range(30)
start = time.monotonic()
result = progress_imap(my_awesome_foo, tasks,
process_timeout=1.5,
initializer=memory_limit,
initargs=(100,),
n_cpu=4,
error_behavior='coerce',
set_error_value=float('nan'),
)
print(f'time took: {time.monotonic() - start:.1f}')
print(result)
time took: 8.0
[nan, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, nan, 21, 22, 23, 24, 25, 26, 27, 28, 29]
Let's ignore exception:
if __name__ == '__main__':
tasks = range(30)
start = time.monotonic()
result = progress_imap(my_awesome_foo, tasks,
process_timeout=1.5,
initializer=memory_limit,
initargs=(100,),
n_cpu=4,
error_behavior='ignore',
set_error_value=None,
)
print(f'time took: {time.monotonic() - start:.1f}')
print(result)
time took: 8.0
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29]
Problems of the naive approach
Why can't I do something simpler? Let's take the standard imap method and run through it in a loop with tqdm and take the results from the processes:
from multiprocessing import Pool
from tqdm.auto import tqdm
if __name__=='__main__':
with Pool() as p:
tasks = [20 + i for i in range(15)]
pool = p.imap(fibonacci, tasks)
result = []
for i in tqdm(pool, total=len(tasks)):
result.append(i)
It looks good, doesn't it? But let's do the following, make the first task very difficult for the core. To do this, I will insert the number 38 at the beginning of the tasks list. Let's see what happens
if __name__=='__main__':
with Pool() as p:
tasks = [20 + i for i in range(15)]
tasks.insert(0, 39)
pool = p.imap_unordered(fibonacci, tasks)
result = []
for i in tqdm(pool, total=len(tasks)):
result.append(i)
This is a fiasco. Our progress hung on the completion of the first task and then at the end showed 100% progress. Let's try to do the same experiment only for the progress_imap function:
if __name__=='__main__':
tasks = [20 + i for i in range(15)]
tasks.insert(0, 39)
result = progress_imap(fibonacci, tasks)
The progress_imap function takes care of collecting the result and closing the process pool for you. In fact, the naive approach described above will work for the standard imap_unordered method. But it does not guarantee the order of the returned result. This is often critically important.
License
MIT license
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file parallelbar-1.3.1.tar.gz
.
File metadata
- Download URL: parallelbar-1.3.1.tar.gz
- Upload date:
- Size: 12.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0a4d82e46f0f7b5f9605fecce0ecaf2e7dad1003ff4a5d6dd47a6d746935771b |
|
MD5 | a730e9d818626726b7e007a6dfa2708c |
|
BLAKE2b-256 | 1c1c22b407ac10a540e5e53f8df9af249245cb40895e69e20595c437edb7a8f6 |
File details
Details for the file parallelbar-1.3.1-py3-none-any.whl
.
File metadata
- Download URL: parallelbar-1.3.1-py3-none-any.whl
- Upload date:
- Size: 9.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6f8d8f8986722a8b596b72586525f29fb3cab7fdd37d9d2817730bf44235be93 |
|
MD5 | c4fb4d7f659ac275bcae6275756fa906 |
|
BLAKE2b-256 | a3d20389e2cda94cdebccad4ad515316f5dd080fe99e645a8a07d49fb2229be0 |