Skip to main content

Efficient parallel task scheduling and concurrency management

Project description

parallelism

Unlock advanced task scheduling in Python with parallelism. Seamlessly coordinate parallel and concurrent execution, optimizing performance while ensuring code integrity. Embrace expert scheduling techniques to elevate your programming to new heights of efficiency and responsiveness.

Installation

You can install this package using pip:

pip install parallelism

Basic Usage

Explore an effortless approach to task creation and management. Follow these steps to get started:

  1. Import the necessary classes and functions in your Python code.
# Built-in modules
from multiprocessing import Process
from threading import Thread

# Third-party libraries
from parallelism import scheduled_task, task_scheduler
  1. Define your task functions. These user-defined functions will be executed in parallel and concurrently.
def func(*args, **kwargs):
    if not args and not kwargs:
        raise ValueError('Missing *args or **kwargs')
    return args, kwargs
  1. Create task instances using the scheduled_task function, specifying the execution unit (Process or Thread), task name, function, and provide any required positional or keyword arguments.
task1 = scheduled_task(Process, 'task1', func, args=(1, 2, 3), continual=True)
task2 = scheduled_task(Process, 'task2', func, kwargs={'a': 10, 'b': 20}, continual=True)
task3 = scheduled_task(Thread, 'task3', func, continual=True)
  1. Schedule tasks using the task_scheduler function, Specify the tasks to be executed along with the desired number of processes and threads.
result = task_scheduler(tasks=(task1, task2, task3), processes=2, threads=4)
  1. Access task execution details and results through the result object, providing insights into execution times, elapsed times, exceptions, and return values:
>>> result.execution_time
{
    'task1': datetime.datetime(%Y, %m, %d, %H, %M, %S, %f),
    'task2': datetime.datetime(%Y, %m, %d, %H, %M, %S, %f),
    'task3': datetime.datetime(%Y, %m, %d, %H, %M, %S, %f),
}
>>> result.elapsed_time
{
    'task1': float(...),
    'task2': float(...),
    'task3': float(...),
}
>>> result.raise_exception
{
    'task3': ValueError('Missing *args or **kwargs'),
}
>>> result.return_value
{
    'task1': ((1, 2, 3), {}),
    'task2': ((), {'a': 10, 'b': 20}),
}

For more comprehensive documentation and advanced usage, please refer to the full API Documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

parallelism-0.1.4.tar.gz (21.7 kB view details)

Uploaded Source

Built Distribution

parallelism-0.1.4-py3-none-any.whl (21.5 kB view details)

Uploaded Python 3

File details

Details for the file parallelism-0.1.4.tar.gz.

File metadata

  • Download URL: parallelism-0.1.4.tar.gz
  • Upload date:
  • Size: 21.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for parallelism-0.1.4.tar.gz
Algorithm Hash digest
SHA256 a751d6206fc90f5903566fe19bbcb2d20bb3bafd4237630ad921804a5970c303
MD5 eed8ef8a0639d7a226ad5a01b6ef21a5
BLAKE2b-256 4c1a2d0cc085b1d24d8b1049b3d8c8e959c2742421b44fddecb789bcc5336177

See more details on using hashes here.

File details

Details for the file parallelism-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: parallelism-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 21.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for parallelism-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 d97bd8c5b6062a4cf5b59a01acbfe26b3f1a8450277782f326bc5b781413f427
MD5 5d49ad1d3570e1c11b9989eb19b083be
BLAKE2b-256 8299f2e5cba4c730e681baa3ed93d198cf1ab0ba18e810cff4d2680d67ed0b5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page