Skip to main content

A Python Wrapper for the workload model proposed by Lublin

Project description

A Python port of the Workload Model proposed by Lublin & Feitelson.

The following code shows how to use it:

from parallelworkloads import lublin99
w = lublin99.Lublin99(1, 2)  # Will use both batch and interactive jobs
w.numJobs=4  # will generate four jobs
w.generate()  # The four generated jobs are shown below

[SwfJob(jobId=1, submissionTime=103, waitTime=-1, runTime=12379,
allocProcs=16, avgCpuUsage=-1, usedMem=-1, reqProcs=-1, reqTime=-1,
reqMem=-1, status=1, userId=-1, groupId=-1, executable=-1, queueNum=1,
partNum=-1, precedingJob=-1, thinkTime=-1),

SwfJob(jobId=2, submissionTime=3089, waitTime=-1, runTime=177,
allocProcs=16, avgCpuUsage=-1, usedMem=-1, reqProcs=-1, reqTime=-1,
reqMem=-1, status=1, userId=-1, groupId=-1, executable=-1, queueNum=1,
partNum=-1, precedingJob=-1, thinkTime=-1),

SwfJob(jobId=3, submissionTime=3150, waitTime=-1, runTime=10, allocProcs=2,
avgCpuUsage=-1, usedMem=-1, reqProcs=-1, reqTime=-1, reqMem=-1, status=1,
userId=-1, groupId=-1, executable=-1, queueNum=0, partNum=-1,
precedingJob=-1, thinkTime=-1),

SwfJob(jobId=4, submissionTime=3172, waitTime=-1, runTime=7,
allocProcs=32, avgCpuUsage=-1, usedMem=-1, reqProcs=-1, reqTime=-1,
reqMem=-1, status=1, userId=-1, groupId=-1, executable=-1, queueNum=0,
partNum=-1, precedingJob=-1, thinkTime=-1)]

User runtime estimates

parallelworkloads also supports generating runtime estimates based on the model proposed by Dan Tsafrir in 2005. For the model to work, it needs at least 200 jobs. Here’s an example continuing the previous one:

from parallelworkloads import tsafrir05

w.numJobs = 200
jobs = w.generate()
print('Original requested time of first job:', jobs[0].reqTime)
t = tsafrir05.Tsafrir05(jobs)
jobs = t.generate(jobs)
print('Generated requested time of first job:', jobs[0].reqTime)

Which gives as output:

Original requested time: -1
Generated requested time: 22962.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

parallelworkloads-0.1.3.tar.gz (3.2 kB view details)

Uploaded Source

Built Distributions

parallelworkloads-0.1.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

parallelworkloads-0.1.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (213.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

parallelworkloads-0.1.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (967.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

parallelworkloads-0.1.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (96.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

parallelworkloads-0.1.3-cp310-cp310-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

parallelworkloads-0.1.3-cp310-cp310-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

parallelworkloads-0.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (930.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

parallelworkloads-0.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (890.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

parallelworkloads-0.1.3-cp310-cp310-macosx_10_9_x86_64.whl (120.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

parallelworkloads-0.1.3-cp39-cp39-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

parallelworkloads-0.1.3-cp39-cp39-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

parallelworkloads-0.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (927.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

parallelworkloads-0.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (887.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

parallelworkloads-0.1.3-cp39-cp39-macosx_10_9_x86_64.whl (120.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

parallelworkloads-0.1.3-cp38-cp38-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

parallelworkloads-0.1.3-cp38-cp38-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

parallelworkloads-0.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (928.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

parallelworkloads-0.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (888.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

parallelworkloads-0.1.3-cp38-cp38-macosx_10_9_x86_64.whl (119.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

parallelworkloads-0.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

parallelworkloads-0.1.3-cp37-cp37m-musllinux_1_1_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

parallelworkloads-0.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (889.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

parallelworkloads-0.1.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (850.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

parallelworkloads-0.1.3-cp37-cp37m-macosx_10_9_x86_64.whl (119.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

parallelworkloads-0.1.3-cp36-cp36m-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

parallelworkloads-0.1.3-cp36-cp36m-musllinux_1_1_i686.whl (1.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

parallelworkloads-0.1.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (889.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

parallelworkloads-0.1.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (850.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

parallelworkloads-0.1.3-cp36-cp36m-macosx_10_9_x86_64.whl (119.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file parallelworkloads-0.1.3.tar.gz.

File metadata

  • Download URL: parallelworkloads-0.1.3.tar.gz
  • Upload date:
  • Size: 3.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3.tar.gz
Algorithm Hash digest
SHA256 b91efa3670266b15b7dfd76577be75d58b52944e3d76f3c5254d591b6e38471a
MD5 50e45e26c8027a2f695bbfcb48bcfe74
BLAKE2b-256 81291e3f32c0d615dc1040333bc25b7c35f00a0a0b20274648976ad9de8d89ea

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for parallelworkloads-0.1.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ac91977cf2e5ad454812fd5cc5111d81d5aa4cedd1d5f39f14b1a06d9cc7628
MD5 23338a342a0d243d7d9e5928401586ed
BLAKE2b-256 b9c52fa64eaba418c90a70cde740ad6418fa7a3ba2a6e9c16cc7190a35ab6747

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for parallelworkloads-0.1.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 53fcb60b41411b095f9004c9b82e75a52d15ba0a354b8a2f4e11cde8b978860d
MD5 13ea7b810c24042fb4a0decb4be290e0
BLAKE2b-256 aea19e7101ca9103c3a65f1ea9496226511e1b965f6d012bbc5bba976c39becb

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 213.0 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1e24bcbae681af11f89618161b5cb7a97164bfcead1124b7fd11c4308dd73147
MD5 f1eab9b59e2031b908f58269f187b55e
BLAKE2b-256 e8b5b18357eb5daa5e07a1399efad68ba22af16fd72d51267c081561ed88b21e

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for parallelworkloads-0.1.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c45186f80dec86d8f293384539c6d9f739bff04246285a55e7cbd3281565886
MD5 52e290f5ea03e3610e257f0af8fe8f0c
BLAKE2b-256 b4459b561bb6b4ff691e5433496ca6350d942e6ec7ac03de2fd374b962612d5a

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for parallelworkloads-0.1.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cb3d9adb7e227e3d3314cc41838952d4358525c7adf3dae6c16ce75945f85e70
MD5 f6f1b8eab2246fe2439b2ad49ad0da86
BLAKE2b-256 423da7448997ffff719dd2f540711d4cb5ef23cb021728ab107c79915714650a

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 96.3 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce0704e25186cb5965f955979f07a8b05f07e0f51e987e7621a2c25df5d85976
MD5 11e1f67445189158084c587451769015
BLAKE2b-256 68c60b8a6665bf353179d4c37025d2b7cedccd45d26792eb8fc887037dd8cd7b

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 82bdcab743e171f407ffcff3288579144b133867f281338769171456bac01093
MD5 8e02448d1d01dad319531740769e5dc1
BLAKE2b-256 1ecb7dd1f1855d48591e7ba07aa9883d10a5b47a564e8dde76ad834d3e31505e

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 70b7c268271a2dd0063b8401c0a590bedf8d92af43b6911f847ac5e92cfe6cf2
MD5 07ba54ba21d354fffd6204ada7e669fb
BLAKE2b-256 1bc357b70836f65d7ff9320572528eaaf96420bdf27ed849fe6d1bfcd67c1b7d

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 930.9 kB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 04fd2163f41866c77cef256ded70424bd1e122c5d9b0fdd5fd3393e897815e79
MD5 2a75344128ce910af2c0df41597450df
BLAKE2b-256 05916ed1598f9962ba933362c97d8a6da7846f76c96111e5874e6dba76c25db4

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for parallelworkloads-0.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f168da4956bcff96d0c0917803779ac8962ee8289b4ccb376901df5992566b75
MD5 92d2a7e4c522523c327423c5fe02aabe
BLAKE2b-256 294a15a6481842617edf5c0288fb235461d12639816fb853c307bae98af93341

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 120.2 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e23d234cb78752eaadb2d1562f67833217389dc55d5f3f27ac05672febb3099
MD5 aba3dbb39d4be9eef0ea7dec5862d4c0
BLAKE2b-256 9c21fea4084a2af54a792aff966fdba55ebe3c28a79aee6d61704f2661f033f8

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a27c6dd66b7eb70854a83b397aae2475b3a1ee78c94a337fa3281a5d72d2d231
MD5 edcb9d079a04fd1e5dd2ad399676048f
BLAKE2b-256 a9bb1a70622d7725a8ffb00b10697f2b28fd96c8fbd042a04b4acea70961ba97

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fad0de69e95943642da146db8fd7e474c33bbbc75407fa7bf4e07caa19b9f26d
MD5 c7dd184c1ef65e07495fbf23b8e4771d
BLAKE2b-256 5567256fe40c3aaed3f255e39198f804dc5dd4013e33a9c8e9ca80998a2506c1

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 927.9 kB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb4f8957b1b3a589ca3b7c12dfe217fad81fb2d9f2435a694bee00170ea145fd
MD5 8d2a1f72a575b06c7c3e6614d262d24c
BLAKE2b-256 57d13a1d2af7885a191bbe683058ece2be045a9ce054a00b04b2272c663c771d

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for parallelworkloads-0.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0e4b1f97474dccd84a2de161050f44a380d9da2fdf5cde34ae9b8dca912c235a
MD5 982f0eb50267da5415e47dfcddcc6744
BLAKE2b-256 b56d3f49c6fe6d728b59e9e4ae0d1f776efcde63521cd6718319efc3471939dc

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 120.2 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67da8396a53424f652401e64ae6efd11f0f28c32100839d5556b4c713cdae16e
MD5 fd589d675c038db853c8bff02b3f51a4
BLAKE2b-256 3431eea3abc5587e60e029d60af4a2c4246ddf35214e5d9dfdb8cb98ae4fa6d1

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2b40b4bee01238c8916e7099039f30a733eec86fa3cefde1b00041e30e9938f4
MD5 900d993d89159f5b789eb0d52d0fad03
BLAKE2b-256 872d49208aa1ffcb9df22c93466482e16bcff039a560d5b8fc68c6db4450a4d1

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0b437811118810c9a39b36fdaebb118451eae32baf7afe8f623cf075802b702b
MD5 de9b641f324869b0adbd206cf785e2bf
BLAKE2b-256 fb01f88ed0ee3f279b66ad46cc5fa3fc5d991c843a90cc129ee89ba3b85486b3

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 928.0 kB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63a1b68c155243dabc7a280195553eb48e748a128cd57b5e677f5d891bd7a775
MD5 bb7a28722bf2218fe9954d39ae3ced45
BLAKE2b-256 82746b9c19681c64e615e2dc09d2e5bd829f95b395c07af1c2016111c20aaf5d

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for parallelworkloads-0.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 22f1c0c9932a7ef9b6b67b89a5767298ac14db6dffd983a39f12f1956c0c8c76
MD5 1224e98962d1dec091a1bf1e6c1b4913
BLAKE2b-256 ec3b5469d50669d7abea67005314520d5cb15e5ee5b0ff43d49006777a65598a

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 119.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 efd2460a7e35d84fc2947671b870ff06bb78e9e91ff4d9dac79681ae25a96f71
MD5 f6d5d349e172040de07621eff64f6015
BLAKE2b-256 d56852eb9ea6023566bd963b80433b35cc89908e700f74cea4702d9c97ab1b8f

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7e2cfc9c0c432527a99e0d7164dc3d43d2250d8fb9b6f860ac019babb808aa32
MD5 aa1b67d7939285fa7bd56a5079180f5d
BLAKE2b-256 b83e27c7ef0ffdb6ff6af471c2de306756e9c432c174aea55ea6726dea99d2ea

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8a959ffda27692f71c3429e23a237defdb5ad9b7878cda16fbdf4f7c48435c36
MD5 db09360ba8587f0e8481c70b32e9680a
BLAKE2b-256 3ef122678b0ab320cb2eaa63cd87727ac496c7c69eb00e0a6d2d9729cda879da

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 889.4 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f9233801c35a7479883a7e476ce9d13eea2500b55e48a5dfd1a8ed7f586c0b68
MD5 5ab514ded3520c0b90e00a2266256ff1
BLAKE2b-256 7e4fea9376083da0b6ba94e34345d61151cb7cc56ab5bcf1868fc21565a0877b

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for parallelworkloads-0.1.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 93a8a91595bc9c8583f4638bc9637fc3ec8c378ffbb3cc848633998580c59b24
MD5 c9c6259c0cee46ccd6bc9e34cb5c87db
BLAKE2b-256 cf32d4914c0c29c4da8f71299c6202cf2c62a9ac3261ae196362ef1694bde0e2

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 119.3 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f191aedb3d525abea29f3211b1651a558adea1729e9470eab2aa82739c0c46b
MD5 167b24d379766918c057626c297a9a6b
BLAKE2b-256 8f587d9724d45fa5b060b1eb972984fcd5bc7e3ba790ccf2ec30302904626fb1

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 129aa2eb863fd70e55e0c3796832f9ae51f65b31318ee97fbebf58682151bed8
MD5 d8ff4cbf28fcdb3a4d286a6b895b22e7
BLAKE2b-256 ff0b09b9238e82d123ab70cd42744713ae574895b0139cf8677e68c949b47035

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp36-cp36m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7d0bace52a26e1890fdbe018c638bd2b40268277a8bf342f3b458d0cbacb2c9b
MD5 53817864a79ecdbfb5b11cfcd6593b2d
BLAKE2b-256 fc2a40a9a06647b63d158d762f1ecca06aacaf125e6dfd53c339eb671a35b278

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 889.6 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9bac00562b7b16ea224904ee6c7cbe3349d498ec31caa1513771732805a10a23
MD5 73211cbeaa10fdbc254e371db1b0fab5
BLAKE2b-256 bc45c38a0c5a573b700131fa05a9a8953b54cc2cd72f3559a88a5b63c3b1a068

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for parallelworkloads-0.1.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ac77ec5cccde17d2b5214d5126f7c50e35cdc83d8a74fae9b9bafe66beed1aa1
MD5 d54c3899580fd4b2771a1792d594a18d
BLAKE2b-256 a5e8f207d418513c795ebfdf447cf9b8bea33726c3f3dc535a5ca8340557db0e

See more details on using hashes here.

File details

Details for the file parallelworkloads-0.1.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: parallelworkloads-0.1.3-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 119.5 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for parallelworkloads-0.1.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d270e2f84f973c1a1ecad439d9aff3ff28acd15f7be8799ffb197787e0b782d4
MD5 818ce0f1f1256da6a47f01bb79edd0fe
BLAKE2b-256 3962a7b58c4482ba52877b5bea2804a01f3c3bceb1f8f9bfb0e5b19b6170d6c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page