Parameterframe
The module provides an interface for managing solution parameters.
It allows for the structured storage and retrieval of parameter sets from a database.
import sys
import pandas as pd
import os
sys.path.append('../')
from parameterframe import ParameterFrame, MockerDatabaseConnector, SqlAlchemyDatabaseManager
Content
- Adding new solution and uploading it
- Processing new files and creating parameter set
- Adding parameter set to solution and commiting
- Uploading parameter sets
- Getting latest parameter set id for solution
- Changing parameter set status
- Pulling select parameter sets
- Reconstructing parameter se
- Structure of local commit tables
- Scores
1. Adding new solution and uploading it
# - with database connector for MockerDB
pf = ParameterFrame(
database_connector = MockerDatabaseConnector(connection_details = {
'base_url' : 'http://localhost:8001'})
)
when using SqlAlchemyDatabaseManager with database for the first time, it might be useful to create tables with SqlAlchemyDatabaseManager.create_tables
and if schema of the database needs to be reset SqlAlchemyDatabaseManager.drop_tables
# - with SqlAlchemy database connector
pf = ParameterFrame(
database_connector = SqlAlchemyDatabaseManager(connection_details = {
'base_url' : 'postgresql+psycopg2://postgres:mysecretpassword@localhost:5432/mytestdb'})
)
pf.show_solutions()
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
solution_id |
solution_name |
solution_description |
deployment_date |
deprecation_date |
maintainers |
commited_parameter_sets |
aos |
pos |
pf.add_solution(
# mandatory
solution_name="new_example_solution",
# optional description
solution_description="Description of new example solution.",
deployment_date="2024-xx-xx",
deprecation_date=None,
maintainers="some text about maintainers credentials"
)
pf.add_solution(
# mandatory
solution_name="new_example_solution2",
# optional description
solution_description="Description of new example solution.",
deployment_date="2024-xx-xx",
deprecation_date=None,
maintainers="some text about maintainers credentials"
)
Solution id for new_example_solution: b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca
Solution id for new_example_solution2: 1c0b910dc0074ea3966fbb1a96038e5eaee8dc1b873f9867830e0659b54dd311
True
pf.commit_solution(
# either solution id or solution name should be provided
solution_name="new_example_solution"
)
pf.commit_solution(
# either solution id or solution name should be provided
solution_name="new_example_solution2"
)
Commited solution description for b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca
Commited solution description for 1c0b910dc0074ea3966fbb1a96038e5eaee8dc1b873f9867830e0659b54dd311
True
pf.show_solutions()
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
solution_id |
solution_name |
solution_description |
deployment_date |
deprecation_date |
maintainers |
commited_parameter_sets |
aos |
pos |
0 |
b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca |
new_example_solution |
Description of new example solution. |
2024-xx-xx |
None |
some text about maintainers credentials |
0 |
0 |
0 |
1 |
1c0b910dc0074ea3966fbb1a96038e5eaee8dc1b873f9867830e0659b54dd311 |
new_example_solution2 |
Description of new example solution. |
2024-xx-xx |
None |
some text about maintainers credentials |
0 |
0 |
0 |
pf.push_solution(
# either solution id or solution name should be provided
solution_name = "new_example_solution"
)
True
2. Processing new files and creating parameter set
params_path = "../tests/parameterframe/example_configs"
pf = ParameterFrame(
params_path = params_path,
database_connector = MockerDatabaseConnector(connection_details = {
'base_url' : 'http://localhost:8001'})
)
pf = ParameterFrame(
params_path = params_path,
database_connector = SqlAlchemyDatabaseManager(connection_details = {
'base_url' : 'postgresql+psycopg2://postgres:mysecretpassword@localhost:5432/mytestdb'})
)
pf.process_parameters_from_files()
True
pf.show_solutions()
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
solution_id |
solution_name |
solution_description |
deployment_date |
deprecation_date |
maintainers |
commited_parameter_sets |
aos |
pos |
pf.make_parameter_set(
parameter_set_name="test_set",
parameter_set_description="example parameters for test purposes",
parameter_names=['param_1','param_2','param_10', 'param_11','param_21']
)
Parameter set id for test_set: a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5
3. Adding parameter set to solution and commiting
pf.add_parameter_set_to_solution(
solution_id = 'b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
parameter_set_name="test_set")
b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca is not in solutions saved to memory!
Name pink_happy_car_642 is assigned to b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca temporarily!
True
pf.commit_solution(solution_name="pink_happy_car_642",
parameter_set_names=["test_set"])
Commited solution tables for b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca
True
pf.show_solutions()
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
solution_id |
solution_name |
solution_description |
deployment_date |
deprecation_date |
maintainers |
commited_parameter_sets |
aos |
pos |
0 |
b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca |
None |
None |
None |
None |
None |
1 |
0.05 |
0.0 |
pf.show_parameter_sets(solution_id = 'b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca')
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
parameter_set_id |
parameter_set_name |
parameter_set_description |
deployment_status |
insertion_datetime |
commited_parameters |
aos |
pos |
0 |
a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5 |
test_set |
example parameters for test purposes |
STAGING |
2024-05-21 03:03:23 |
5 |
0.05 |
0.0 |
pf.show_parameters(solution_id = 'b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
parameter_set_id = 'a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5')
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
parameter_id |
parameter_name |
parameter_description |
file_name |
file_type |
commited_attributes |
aos |
0 |
4cea5b09e77da310c5105978f2ceea5c5d8c9c7b65d0e00b45135ea90fc011af |
param_1 |
|
param_1.yaml |
yaml |
3 |
0.05 |
1 |
bf11768decb1d0204e2636edd05c354573d473e67f1b048369b2ee99c865bf5f |
param_2 |
|
param_2.yaml |
yaml |
6 |
0.05 |
2 |
9a4a3ace265c9bf2facc0044ca24260c42805c6e7b2a608dfd2f56a54d9d36be |
param_10 |
|
param_10.txt |
txt |
9 |
0.00 |
3 |
ace2f31433212fbf9e764069a30a7675ca78f496d31f061d06d0a0420fc52768 |
param_11 |
|
param_11.dill |
other |
1 |
0.00 |
4 |
1a4f19ee9e186ee739daecbc778501c5851d3fb5d05c4a3c1200e599855e8689 |
param_21 |
|
param_21.ipynb |
other |
2 |
0.00 |
4. Uploading parameter sets
pf.push_solution(solution_id='b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
parameter_set_names=["test_set"])
True
5. Getting latest parameter set id for solution
# - with database connector for MockerDB
pf = ParameterFrame(
database_connector = MockerDatabaseConnector(connection_details = {
'base_url' : 'http://localhost:8001'})
)
# - with SqlAlchemy database connector
pf = ParameterFrame(
database_connector = SqlAlchemyDatabaseManager(connection_details = {
'base_url' : 'postgresql+psycopg2://postgres:mysecretpassword@localhost:5432/mytestdb'})
)
pf.get_parameter_set_id_for_solution(solution_id='b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
deployment_status="STAGING")
['a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5']
pf.get_deployment_status(solution_id='b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
parameter_set_id='a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5')
'STAGING'
6. Changing parameter set status
# - with database connector for MockerDB
pf = ParameterFrame(
database_connector = MockerDatabaseConnector(connection_details = {
'base_url' : 'http://localhost:8001'})
)
# - with SqlAlchemy database connector
pf = ParameterFrame(
database_connector = SqlAlchemyDatabaseManager(connection_details = {
'base_url' : 'postgresql+psycopg2://postgres:mysecretpassword@localhost:5432/mytestdb'})
)
pf.database_connector.modify_parameter_set_status(
solution_id='b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
parameter_set_ids = 'a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5',
current_deployment_status = "PRODUCTION",
new_deployment_status = "STAGING"
)
True
pf.change_status_from_staging_to_production(
solution_id='b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
parameter_set_id='a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5'
)
b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca + a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5 : STAGING -> PRODUCTION
pf.get_deployment_status(solution_id='b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
parameter_set_id='a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5')
'PRODUCTION'
pf.change_status_from_production_to_archived(
solution_id='b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
parameter_set_id='a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5'
)
b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca + a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5 : PRODUCTION -> ARCHIVED
pf.get_deployment_status(solution_id='b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
parameter_set_id='a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5')
'ARCHIVED'
pf.change_status_from_archived_production(
solution_id='b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
parameter_set_id='a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5'
)
No deployed parameter_set_ids with PRODUCTION from selected!
b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca + a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5 : ARCHIVED -> PRODUCTION
pf.get_deployment_status(solution_id='b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
parameter_set_id='a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5')
'PRODUCTION'
7. Pulling select parameter sets
params_path = "../tests/parameterframe/example_configs"
# - with database connector for MockerDB
pf2 = ParameterFrame(
params_path = params_path,
database_connector = MockerDatabaseConnector(connection_details = {
'base_url' : 'http://localhost:8001'})
)
# - with SqlAlchemy database connector
pf2 = ParameterFrame(
params_path = params_path,
database_connector = SqlAlchemyDatabaseManager(connection_details = {
'base_url' : 'postgresql+psycopg2://postgres:mysecretpassword@localhost:5432/mytestdb'})
)
pf2.show_solutions()
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
solution_id |
solution_name |
solution_description |
deployment_date |
deprecation_date |
maintainers |
commited_parameter_sets |
aos |
pos |
When pulling information with database handler, one could pull specific parameter sets, solutions and everything.
pf2.pull_solution(solution_id='b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
# optionally specify parameter_set_id
parameter_set_id='a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5')
HTTP Request: POST http://localhost:8001/search "HTTP/1.1 200 OK"
HTTP Request: POST http://localhost:8001/search "HTTP/1.1 200 OK"
HTTP Request: POST http://localhost:8001/search "HTTP/1.1 200 OK"
No data was found with applied filters!
No solutions with b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca could be pulled!
True
pf2.pull_solution(solution_id='b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca',
# optionally specify parameter_set_id
parameter_set_id=None)
No solutions with b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca could be pulled!
No parameter sets were pulled for solution_id b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca
Nothing was pulled for b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca
True
pf2.pull_solution(
# optional parameter to skip pull of attributes if data pulled just for show_ methods
pull_attribute_values = False
)
True
pf2.show_solutions()
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
solution_id |
solution_name |
solution_description |
deployment_date |
deprecation_date |
maintainers |
commited_parameter_sets |
aos |
pos |
0 |
cec89c4cbb8c891d388407ea93d84a5cd4f996af6d5c1b0cc5fe1cb12101acf5 |
new_example_solution |
Description of new example solution. |
2024-xx-xx |
None |
some text about maintainers credentials |
6 |
0.397157 |
0.428571 |
pf2.show_parameter_sets(solution_id='cec89c4cbb8c891d388407ea93d84a5cd4f996af6d5c1b0cc5fe1cb12101acf5')
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
parameter_set_id |
parameter_set_name |
parameter_set_description |
deployment_status |
insertion_datetime |
commited_parameters |
aos |
pos |
0 |
5779bbf896ebb8f09a6ea252b09f8adb1a416e8780cf1424fb9bb93dbec8deb5 |
green_tiny_car_749 |
|
STAGING |
2024-05-15 01:36:09 |
3 |
0.025744 |
0.285714 |
1 |
73ece98c90d4e0bcce8b523a8e8d2bd4290c68f2a783ea279b39fe4507e42de7 |
blue_fuzzy_refrigerator_297 |
|
STAGING |
2024-05-15 23:57:17 |
1 |
0.000000 |
0.000000 |
2 |
82b8c5340454adf83667e59092fedbee28213475fd58ab6b3d95b4fc60f4d45f |
purple_giant_television_135 |
|
STAGING |
2024-05-16 00:05:43 |
1 |
0.371413 |
0.142857 |
3 |
3940d6dd4c0d817625a31141874c54cf0c8d88b24994f7915deb4096b3c8d0cf |
blue_tiny_television_381 |
|
STAGING |
2024-05-15 00:37:50 |
2 |
0.025744 |
0.285714 |
4 |
dddc057bc151de9f8fb8caa834c8e13b789cf68cb53299b4c65c23f1e1310acd |
red_sad_scooter_769 |
|
STAGING |
2024-05-16 00:08:21 |
2 |
0.371413 |
0.142857 |
5 |
2f3ee8e19d91a89298d40984df5e7bdd1f1a48008b2e61c88a7f6f81b4ab23f5 |
silver_happy_car_441 |
|
STAGING |
2024-05-16 00:03:25 |
1 |
0.000000 |
0.000000 |
pf2.show_parameters(solution_id='cec89c4cbb8c891d388407ea93d84a5cd4f996af6d5c1b0cc5fe1cb12101acf5',
parameter_set_id='3940d6dd4c0d817625a31141874c54cf0c8d88b24994f7915deb4096b3c8d0cf')
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
parameter_id |
parameter_name |
parameter_description |
file_name |
file_type |
commited_attributes |
aos |
0 |
3386ebc962b1c57745ca24320bf873df6eb84a2b9cb733607d72006347bf95b8 |
Screenshot 2024-05-04 at 02 |
|
Screenshot 2024-05-04 at 02.59.31.png |
other |
35 |
0.0 |
1 |
5afae3951544cd3736685a3b2daa31c00106191a799b96b0c636cd35e9a416ff |
uploads |
|
uploads.zip |
other |
61 |
0.0 |
pf2.show_parameters(solution_id='cec89c4cbb8c891d388407ea93d84a5cd4f996af6d5c1b0cc5fe1cb12101acf5',
parameter_set_id='5779bbf896ebb8f09a6ea252b09f8adb1a416e8780cf1424fb9bb93dbec8deb5')
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
parameter_id |
parameter_name |
parameter_description |
file_name |
file_type |
commited_attributes |
aos |
0 |
3386ebc962b1c57745ca24320bf873df6eb84a2b9cb733607d72006347bf95b8 |
Screenshot 2024-05-04 at 02 |
|
Screenshot 2024-05-04 at 02.59.31.png |
other |
35 |
0.0 |
1 |
4d8ca206d9bd09296b69a95f0c3c62d233282025964c356811510cc074cc2c49 |
1 |
|
1. AF - opis projektu.pdf |
other |
34 |
0.0 |
2 |
5afae3951544cd3736685a3b2daa31c00106191a799b96b0c636cd35e9a416ff |
uploads |
|
uploads.zip |
other |
61 |
0.0 |
pf2.show_parameters(solution_id='cec89c4cbb8c891d388407ea93d84a5cd4f996af6d5c1b0cc5fe1cb12101acf5',
parameter_set_id='dddc057bc151de9f8fb8caa834c8e13b789cf68cb53299b4c65c23f1e1310acd')
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
parameter_id |
parameter_name |
parameter_description |
file_name |
file_type |
commited_attributes |
aos |
0 |
e6ae9d10f3b4d69c1ef6ff8038d13e9f0b093fc3710f2fed0259204aac2fcba4 |
Geekbench 6 |
|
Geekbench 6.app.zip |
other |
1385 |
0.0 |
1 |
be0886c2f5d24aa5672bf84e355d9d4adb527a36e5e973413c555200d7f3fdb2 |
Ollama |
|
Ollama.app.zip |
other |
1400 |
0.0 |
pf2.show_parameters(solution_id='cec89c4cbb8c891d388407ea93d84a5cd4f996af6d5c1b0cc5fe1cb12101acf5',
parameter_set_id='82b8c5340454adf83667e59092fedbee28213475fd58ab6b3d95b4fc60f4d45f')
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
parameter_id |
parameter_name |
parameter_description |
file_name |
file_type |
commited_attributes |
aos |
0 |
e6ae9d10f3b4d69c1ef6ff8038d13e9f0b093fc3710f2fed0259204aac2fcba4 |
Geekbench 6 |
|
Geekbench 6.app.zip |
other |
1385 |
0.0 |
8. Reconstructing parameter set
os.listdir("../tests/parameterframe/reconstructed_files")
[]
pf2.reconstruct_parameter_set(
solution_name = "new_example_solution",
parameter_set_name = "test_set",
params_path = "../tests/parameterframe/reconstructed_files"
)
os.listdir("../tests/parameterframe/reconstructed_files")
['param_2.yaml',
'param_11.dill',
'param_1.yaml',
'param_10.txt',
'param_21.ipynb']
9. Structure of commit tables
solution_description
pd.DataFrame(pf2.commited_tables['b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca']['solution_description'])
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
solution_id |
solution_name |
solution_description |
deployment_date |
deprecation_date |
maintainers |
0 |
b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca |
new_example_solution |
Description of new example solution. |
2024-xx-xx |
None |
some text about maintainers credentials |
solution_parameter_set
param_set_id = 'a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5'
pd.DataFrame(pf2.commited_tables['b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca']['solution_parameter_set'][param_set_id])
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
solution_id |
parameter_set_id |
deployment_status |
insertion_datetime |
0 |
b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca |
a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5 |
PRODUCTION |
2024-05-07 19:51:13 |
parameter_set
pd.DataFrame(pf2.commited_tables['b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca']\
['parameter_set']\
[param_set_id])
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
parameter_set_id |
parameter_id |
0 |
a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5 |
4cea5b09e77da310c5105978f2ceea5c5d8c9c7b65d0e00b45135ea90fc011af |
1 |
a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5 |
bf11768decb1d0204e2636edd05c354573d473e67f1b048369b2ee99c865bf5f |
2 |
a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5 |
9a4a3ace265c9bf2facc0044ca24260c42805c6e7b2a608dfd2f56a54d9d36be |
3 |
a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5 |
ace2f31433212fbf9e764069a30a7675ca78f496d31f061d06d0a0420fc52768 |
4 |
a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5 |
1a4f19ee9e186ee739daecbc778501c5851d3fb5d05c4a3c1200e599855e8689 |
parameter_set_description
pd.DataFrame(pf2.commited_tables['b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca']\
['parameter_set_description']\
[param_set_id])
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
parameter_set_id |
parameter_set_name |
parameter_set_description |
0 |
a54f04d2ff154294309403206e059aec556cdcfa51120649ce663f3230a970d5 |
test_set |
example parameters for test purposes |
parameter_description
pd.DataFrame([tab for param_id, tab_list in pf2.commited_tables['b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca']\
['parameter_description']\
[param_set_id].items()\
for tab in tab_list])
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
parameter_id |
parameter_name |
parameter_description |
file_name |
file_type |
0 |
4cea5b09e77da310c5105978f2ceea5c5d8c9c7b65d0e00b45135ea90fc011af |
param_1 |
|
param_1.yaml |
yaml |
1 |
bf11768decb1d0204e2636edd05c354573d473e67f1b048369b2ee99c865bf5f |
param_2 |
|
param_2.yaml |
yaml |
2 |
9a4a3ace265c9bf2facc0044ca24260c42805c6e7b2a608dfd2f56a54d9d36be |
param_10 |
|
param_10.txt |
txt |
3 |
ace2f31433212fbf9e764069a30a7675ca78f496d31f061d06d0a0420fc52768 |
param_11 |
|
param_11.dill |
other |
4 |
1a4f19ee9e186ee739daecbc778501c5851d3fb5d05c4a3c1200e599855e8689 |
param_21 |
|
param_21.ipynb |
other |
parameter_attribute
pd.DataFrame([tab for param_id, tab_list in pf2.commited_tables['b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca']\
['parameter_attribute']\
[param_set_id].items() \
for tab in tab_list])
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
parameter_id |
attribute_id |
previous_attribute_id |
0 |
4cea5b09e77da310c5105978f2ceea5c5d8c9c7b65d0e00b45135ea90fc011af |
ee25af17445d7622cbf61a5b9424246a1f3104704b68bd31b9b7532471d492e5 |
None |
1 |
4cea5b09e77da310c5105978f2ceea5c5d8c9c7b65d0e00b45135ea90fc011af |
8b5b2be24e60ba407b90967820da8a1385a6d67691a02bc663703160ef655101 |
None |
2 |
4cea5b09e77da310c5105978f2ceea5c5d8c9c7b65d0e00b45135ea90fc011af |
52ea872c99c586530348ba8902dcab831761673d25cf1cb0023576820289ce6b |
None |
3 |
bf11768decb1d0204e2636edd05c354573d473e67f1b048369b2ee99c865bf5f |
7d5ee0e0cd00c3703e5f346c6887baf503faaf9fe090774f6866311f4fa34179 |
None |
4 |
bf11768decb1d0204e2636edd05c354573d473e67f1b048369b2ee99c865bf5f |
ee25af17445d7622cbf61a5b9424246a1f3104704b68bd31b9b7532471d492e5 |
7d5ee0e0cd00c3703e5f346c6887baf503faaf9fe090774f6866311f4fa34179 |
5 |
bf11768decb1d0204e2636edd05c354573d473e67f1b048369b2ee99c865bf5f |
3367512147bf19ae99c986b356af11dcdc067376aa1b79eb8ba8f61324e8dc18 |
7d5ee0e0cd00c3703e5f346c6887baf503faaf9fe090774f6866311f4fa34179 |
6 |
bf11768decb1d0204e2636edd05c354573d473e67f1b048369b2ee99c865bf5f |
341769820d8937a5c9f9b980eefca37f3f37fcc6fd01c6f4c930fdb9d5dd5128 |
7d5ee0e0cd00c3703e5f346c6887baf503faaf9fe090774f6866311f4fa34179 |
7 |
bf11768decb1d0204e2636edd05c354573d473e67f1b048369b2ee99c865bf5f |
2e8b00e571f9d835d3f022a9ff49b9779034ab21bffdcde075d9d729fabeb960 |
341769820d8937a5c9f9b980eefca37f3f37fcc6fd01c6f4c930fdb9d5dd5128 |
8 |
bf11768decb1d0204e2636edd05c354573d473e67f1b048369b2ee99c865bf5f |
ecd93cf051988b23b3590415f4e7d550de264600d7d2af8704c973b9c98ca6a9 |
341769820d8937a5c9f9b980eefca37f3f37fcc6fd01c6f4c930fdb9d5dd5128 |
9 |
9a4a3ace265c9bf2facc0044ca24260c42805c6e7b2a608dfd2f56a54d9d36be |
fa4e8d81f4dbe6d306aff59bea4693d325a203be5d5b9fde5d5f1e7cce26b861 |
None |
10 |
9a4a3ace265c9bf2facc0044ca24260c42805c6e7b2a608dfd2f56a54d9d36be |
c26e7e96f0f3647c159b0934f4dc55207ac059abb56005d7a8acd8344ef14798 |
fa4e8d81f4dbe6d306aff59bea4693d325a203be5d5b9fde5d5f1e7cce26b861 |
11 |
9a4a3ace265c9bf2facc0044ca24260c42805c6e7b2a608dfd2f56a54d9d36be |
f7cd339f77c1799f399d8ebcbb27f2d41a448622254d64e9270ae2316211ac1d |
c26e7e96f0f3647c159b0934f4dc55207ac059abb56005d7a8acd8344ef14798 |
12 |
9a4a3ace265c9bf2facc0044ca24260c42805c6e7b2a608dfd2f56a54d9d36be |
15a33fe62774a1857b404f453ba1195eb4355e10bc9519f2f991dd7ba8db19b7 |
f7cd339f77c1799f399d8ebcbb27f2d41a448622254d64e9270ae2316211ac1d |
13 |
9a4a3ace265c9bf2facc0044ca24260c42805c6e7b2a608dfd2f56a54d9d36be |
99761e3d58bc213dc3ab33f2dc8dabe5f97d3aea6b59cd367d40b76937f49aa6 |
15a33fe62774a1857b404f453ba1195eb4355e10bc9519f2f991dd7ba8db19b7 |
14 |
9a4a3ace265c9bf2facc0044ca24260c42805c6e7b2a608dfd2f56a54d9d36be |
036a9c122c1f4c9304afa23c4d1fce5224c270a206889afa689f3efb36ff368d |
99761e3d58bc213dc3ab33f2dc8dabe5f97d3aea6b59cd367d40b76937f49aa6 |
15 |
9a4a3ace265c9bf2facc0044ca24260c42805c6e7b2a608dfd2f56a54d9d36be |
e72aa8015688052f4e7fddbf4c74e5bf2bd74239ebf3902a5fdc008ecb03aa46 |
036a9c122c1f4c9304afa23c4d1fce5224c270a206889afa689f3efb36ff368d |
16 |
9a4a3ace265c9bf2facc0044ca24260c42805c6e7b2a608dfd2f56a54d9d36be |
0ae8eda3dbeedbc17e27a679c5426dd3af1434f7c37b4ecd3b2fb5c492272b75 |
e72aa8015688052f4e7fddbf4c74e5bf2bd74239ebf3902a5fdc008ecb03aa46 |
17 |
9a4a3ace265c9bf2facc0044ca24260c42805c6e7b2a608dfd2f56a54d9d36be |
cedcfbb0d95798514b6aaf30118fff7b46f863f1bc8b80bb2ddd2145e5b3f318 |
0ae8eda3dbeedbc17e27a679c5426dd3af1434f7c37b4ecd3b2fb5c492272b75 |
18 |
ace2f31433212fbf9e764069a30a7675ca78f496d31f061d06d0a0420fc52768 |
ace2f31433212fbf9e764069a30a7675ca78f496d31f061d06d0a0420fc52768 |
None |
19 |
1a4f19ee9e186ee739daecbc778501c5851d3fb5d05c4a3c1200e599855e8689 |
87d93e1862f0f58199c3fcb7114b92fe59f03581804b1c8419868fb00ff8a469 |
None |
20 |
1a4f19ee9e186ee739daecbc778501c5851d3fb5d05c4a3c1200e599855e8689 |
b4a705d09aa0361f4db453da32abb05a5c4e0249d6180d2b8a58d72d08dbd6a0 |
87d93e1862f0f58199c3fcb7114b92fe59f03581804b1c8419868fb00ff8a469 |
21 |
1a4f19ee9e186ee739daecbc778501c5851d3fb5d05c4a3c1200e599855e8689 |
e4e2c33a2ea67f34bf3ac1e9d99edaad501c7dc4ea82f4b60e9d959418d8438d |
b4a705d09aa0361f4db453da32abb05a5c4e0249d6180d2b8a58d72d08dbd6a0 |
22 |
1a4f19ee9e186ee739daecbc778501c5851d3fb5d05c4a3c1200e599855e8689 |
777abf12375b7f605b21535eb0d6232ce99581c6d2b1179af976cd0708ad27ff |
e4e2c33a2ea67f34bf3ac1e9d99edaad501c7dc4ea82f4b60e9d959418d8438d |
attribute_values
pd.DataFrame([tab for param_id, tab_list in pf2.commited_tables['b5c2e4a9bdcb57cc70bdb7310c7909cc1549550add79e3fbcc8aa1cf323cd8ca']\
['attribute_values']\
[param_set_id].items() \
for tab in tab_list])
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
|
attribute_id |
previous_attribute_id |
attribute_name |
attribute_value |
attribute_value_type |
0 |
ee25af17445d7622cbf61a5b9424246a1f3104704b68bd31b9b7532471d492e5 |
None |
name |
Some name |
str |
1 |
8b5b2be24e60ba407b90967820da8a1385a6d67691a02bc663703160ef655101 |
None |
age |
111 |
int |
2 |
52ea872c99c586530348ba8902dcab831761673d25cf1cb0023576820289ce6b |
None |
country |
Some land |
str |
3 |
ee25af17445d7622cbf61a5b9424246a1f3104704b68bd31b9b7532471d492e5 |
None |
name |
Some name |
str |
4 |
7d5ee0e0cd00c3703e5f346c6887baf503faaf9fe090774f6866311f4fa34179 |
None |
employee |
{'name': 'Some name', 'id': 10293, 'contact': {'email': 'some.name... |
dict |
5 |
3367512147bf19ae99c986b356af11dcdc067376aa1b79eb8ba8f61324e8dc18 |
None |
id |
10293 |
int |
6 |
341769820d8937a5c9f9b980eefca37f3f37fcc6fd01c6f4c930fdb9d5dd5128 |
None |
contact |
{'email': 'some.name@example.com', 'phone': '+1234567890'} |
dict |
7 |
2e8b00e571f9d835d3f022a9ff49b9779034ab21bffdcde075d9d729fabeb960 |
None |
email |
some.name@example.com |
str |
8 |
ecd93cf051988b23b3590415f4e7d550de264600d7d2af8704c973b9c98ca6a9 |
None |
phone |
+1234567890 |
str |
9 |
fa4e8d81f4dbe6d306aff59bea4693d325a203be5d5b9fde5d5f1e7cce26b861 |
None |
0 |
\X/Fc7;/v`6joU5z*n{35zFB<<6BMC,}/_04],>v$Jr2&0M_7qU'IY#6uO\$kEr.)Z... |
str |
10 |
c26e7e96f0f3647c159b0934f4dc55207ac059abb56005d7a8acd8344ef14798 |
None |
1 |
A7J+1x5|?r]2zg54nxoa>W*loh8Np~*9+*KxWLuD/Z5g!=DN>}c#]Dt->tiov?|Ms.... |
str |
11 |
f7cd339f77c1799f399d8ebcbb27f2d41a448622254d64e9270ae2316211ac1d |
None |
2 |
LUs%<HRbNA_4:yYTh!!x&oFZ201sQ7;~Q_IYr"lGRMd=xx,r}|n8zHIP6%JN)",vQI... |
str |
12 |
15a33fe62774a1857b404f453ba1195eb4355e10bc9519f2f991dd7ba8db19b7 |
None |
3 |
b&z(/Z{s@U>@o!}{+(mmygo}u~AHgdu>:jz4fNBm0;Q6'o+f%H/z3^8Hh!w<#z.~21... |
str |
13 |
99761e3d58bc213dc3ab33f2dc8dabe5f97d3aea6b59cd367d40b76937f49aa6 |
None |
4 |
.#;5Cu]5~8ZmYBLI4w)|h=)C<(#`KSoM,`7n?dun7]LX>j7/U>Jf||4`AN_u*W!*3)... |
str |
14 |
036a9c122c1f4c9304afa23c4d1fce5224c270a206889afa689f3efb36ff368d |
None |
5 |
0S)*}6"i)kUg3=n:}>Ji)!"BTbzsdgps8{cR]`.41QJ<O{wr[}}gGan_O63D0WBr]<... |
str |
15 |
e72aa8015688052f4e7fddbf4c74e5bf2bd74239ebf3902a5fdc008ecb03aa46 |
None |
6 |
Xb;IgM/`T:VY*6XQ:nvB3)>@32w8H-cD"g>x`MlWp_TnuyCaz62e??md<8tR$Q=X7<... |
str |
16 |
0ae8eda3dbeedbc17e27a679c5426dd3af1434f7c37b4ecd3b2fb5c492272b75 |
None |
7 |
pq.%\nmm;M!^cyS|ApMpnjUS<#Ov?e+n"wX/to.wjifCG.fKK@6gI+Wvax&}j18R8p... |
str |
17 |
cedcfbb0d95798514b6aaf30118fff7b46f863f1bc8b80bb2ddd2145e5b3f318 |
None |
8 |
+-;Zt=ex |
str |
18 |
ace2f31433212fbf9e764069a30a7675ca78f496d31f061d06d0a0420fc52768 |
None |
0 |
b'\x80\x04\x95h\x00\x00\x00\x00\x00\x00\x00}\x94(\x8c\x07integer\x... |
bytes |
19 |
87d93e1862f0f58199c3fcb7114b92fe59f03581804b1c8419868fb00ff8a469 |
None |
0 |
b'{\n "cells": [\n {\n "cell_type": "markdown",\n "metadata":... |
bytes |
20 |
b4a705d09aa0361f4db453da32abb05a5c4e0249d6180d2b8a58d72d08dbd6a0 |
None |
1 |
xt/plain": [\n "4"\n ]\n },\n "execution_count"... |
bytes |
21 |
e4e2c33a2ea67f34bf3ac1e9d99edaad501c7dc4ea82f4b60e9d959418d8438d |
None |
2 |
"language": "python",\n "name": "python3"\n },\n "language_... |
bytes |
22 |
777abf12375b7f605b21535eb0d6232ce99581c6d2b1179af976cd0708ad27ff |
None |
3 |
r": "python",\n "pygments_lexer": "ipython3",\n "version": "3.... |
bytes |
10. Scores
I. Attribute overlap ratio
AOR represents an overlap ratio between attribute ids that:
- belong to a parameter within parameter set
- belong to a parameter sets within solution
- belong to a solution within solutions
The score is between $0$ and $1$, and the greater the score, the greater is an overlap between attribute ids within select group and non unique attribute ids.
II. Parameter overlap ratio
POR represents an overlap ratio between parameter ids that:
- belong to a parameter sets within solution
- belong to a solution within solutions
The score is between $0$ and $1$, and the greater the score, the greater is an overlap between parameter ids within select group and non unique parameter ids.