Skip to main content

Concisely and clearly create large, parameterized, mapped job specifications

Project description

https://img.shields.io/pypi/v/parameterize_jobs.svg https://github.com/ClimateImpactLab/parameterize_jobs/actions/workflows/pythonpackage.yaml/badge.svg https://codecov.io/gh/ClimateImpactLab/parameterize_jobs/branch/master/graph/badge.svg?token=DUDCDOPYYC Documentation Status

parameterize_jobs is a lightweight, pure-python toolkit for concisely and clearly creating large, parameterized, mapped job specifications.

Features

  • Expand a job’s dimensionality by multiplying ComponentSet, Constant, or ParallelComponentSet objects

  • Extend the number of jobs by adding ComponentSet, Constant, or ParallelComponentSet objects

  • Jobs are provided to functions as dictionaries of parameters

  • The helper decorator @expand_kwargs turns these kwarg dictionaries into named argument calls

  • Works seamlessly with many task running frameworks, including dask’s client.map and profiling tools

TODOs

View and submit issues on the issues page.

Quickstart

ComponentSet objects are the base objects, and can be defined with any number of named iterables:

>>> import parameterize_jobs as pjs

>>> a = pjs.ComponentSet(a=range(5))
>>> a
<ComponentSet {'a': 5}>

These objects have defined lengths (if the provided iterable has a defined length), and can be indexed and iterated over:

>>> len(a)
5

>>> a[0]
{'a': 0}

>>> list(a)
[{'a': 0},
 {'a': 1},
 {'a': 2},
 {'a': 3},
 {'a': 4}]

Adding two ComponentSet objects extends the total job length

>>> a2 = pjs.ComponentSet(a=range(3))

>>> a+a2
<MultiComponentSet [{'a': 5}, {'a': 3}]>

>>> len(a+a2)
8

>>> list(a+a2)

[{'a': 0},
 {'a': 1},
 {'a': 2},
 {'a': 3},
 {'a': 4},
 {'a': 0},
 {'a': 1},
 {'a': 2}]

Multiplying two ComponentSet objects expands their dimensionality:

>>> b = pjs.ComponentSet(b=range(3))

>>> a*b
<ComponentSet {'a': 5, 'b': 3}>

>>> len(a*b)
15

>>> (a*b)[-1]
{'a': 4, 'b': 2}

>>> list(a*b)
[{'a': 0, 'b': 0},
 {'a': 0, 'b': 1},
 {'a': 0, 'b': 2},
 {'a': 1, 'b': 0},
 {'a': 1, 'b': 1},
 {'a': 1, 'b': 2},
 {'a': 2, 'b': 0},
 {'a': 2, 'b': 1},
 {'a': 2, 'b': 2},
 {'a': 3, 'b': 0},
 {'a': 3, 'b': 1},
 {'a': 3, 'b': 2},
 {'a': 4, 'b': 0},
 {'a': 4, 'b': 1},
 {'a': 4, 'b': 2}]

These parameterized job specifications can be used in mappable jobs. The helper decorator expand_kwargs modifies a function to accept a dictionary and expands them into keyword arguments:

>>> @pjs.expand_kwargs
... def my_simple_func(a, b, c=1):
...     return a * b * c

>>> list(map(my_simple_func, a*b))
[0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 2, 4, 6, 8, 0, 3, 6, 9, 12]

Jobs do not have to be the combinatorial product of all components:

>>> ab1 = pjs.ComponentSet(a=[0, 1], b=[0, 1])
>>> ab2 = pjs.ComponentSet(a=[10, 11], b=[-1, 1])

>>> list(map(my_simple_func, ab1 + ab2))
[0, 0, 0, 1, -10, -11, 10, 11]

A Constant object is simply a ComponentSet object defined with single values passed as keyword arguments rather than iterables passed as keyword arguments:

>>> c = pjs.Constant(c=5)

>>> list(map(my_simple_func, (ab1 + ab2) * c))
[0, 0, 0, 5, -50, -55, 50, 55]

A ParallelComponentSet object is simply a MultiComponentSet object where each Component is a Constant object.

>>> pcs = pjs.ParallelComponentSet(a = [1, 2],
                           b = [10, 20])

>>> list(map(my_simple_func, pcs))
[10, 40]

Arbitrarily complex combinations of ComponentSets can be created:

>>> c1 = pjs.Constant(c=1)
>>> c2 = pjs.Constant(c=2)

>>> list(map(my_simple_func, (ab1 + ab2) * c1 + (ab1 + ab2) * c2))
[0, 0, 0, 1, -10, -11, 10, 11, 0, 0, 0, 2, -20, -22, 20, 22]

Anything can be inside a ComponentSet iterable, including data, functions, or other objects:

>>> transforms = (
...     pjs.Constant(transform=lambda x: x, transform_name='linear')
...     + pjs.Constant(transform=lambda x: x**2, transform_name='quadratic'))
...

>>> fps = pjs.Constant(
...     read_pattern='source/my-fun-data_{year}.csv',
...     write_pattern='transformed/my-fun-data_{transform_name}_{year}.csv')

>>> years = pjs.ComponentSet(year=range(1980, 2018))

>>> @pjs.expand_kwargs
... def process_data(read_pattern, write_pattern, transform, transform_name, year):
...
...     df = pd.read_csv(read_pattern.format(year=year))
...
...     transformed = transform(df)
...
...     transformed.to_csv(
...         write_pattern.format(
...             transform_name=transform_name,
...             year=year))
...

>>> _ = list(map(process_data, transforms * fps * years))

This works seamlessly with dask’s client.map to provide intuitive job parameterization:

>>> import dask.distributed as dd
>>> client = dd.LocalClient()
>>> futures = client.map(my_simple_func, (ab1 + ab2) * c1 + (ab1 + ab2) * c2)
>>> dd.progress(futures)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

parameterize_jobs-0.2.0.tar.gz (21.4 kB view details)

Uploaded Source

Built Distribution

parameterize_jobs-0.2.0-py3-none-any.whl (7.2 kB view details)

Uploaded Python 3

File details

Details for the file parameterize_jobs-0.2.0.tar.gz.

File metadata

  • Download URL: parameterize_jobs-0.2.0.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for parameterize_jobs-0.2.0.tar.gz
Algorithm Hash digest
SHA256 110f5fcbaf5c09c81afc1e1980505acea33aab0f0c29bf7947af67cf299eba88
MD5 3ddcfa5e6bf0480f02457fbcce341c3d
BLAKE2b-256 fe6f85ba59db3468fd29de002229e9f99ef902b9b1333c5483050d90fde6d435

See more details on using hashes here.

File details

Details for the file parameterize_jobs-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for parameterize_jobs-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2f1f734001328dd2ce1d982d6e06518541ffc93f93e75284ec1339553a068a5f
MD5 ea7131674c0dc65cfe57b722f19b7efb
BLAKE2b-256 bcbc9a52de7f7c2ffd43e2208471b2522312eb6673f96738d96c556cdaa7bb32

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page