Skip to main content

A simple package for parameterization

Project description

parametric

parametric is a Python library designed for managing and validating immutable parameters. It is built around pydantic and enhances it by focusing on immutability and custom configurations, making it a robust choice for configuration management in applications and especially data-science pipelines.

Key Features

  • Immutable Parameters: parametric enforces immutability by restricting parameters to immutable types such as int, float, str,bool,bytes,tuple,None,pathlib.Path,Enum,Literal, and Unions of those.
  • Freeze Mechanism: parametric introduces a powerful freeze mechanism that allows fields to remain unset or mutable until explicitly frozen, at which point all fields are locked and cannot be modified.
  • Override Mechanisms: Supports overriding parameters via CLI arguments, environment variables, YAML files, and dictionaries.
  • Serialization: Parameters can be easily saved and loaded using YAML.

Installation

You can install parametric via pip:

pip install parametric

Getting Started

Here's a basic example to illustrate how to use parametric:

from parametric import BaseParams

class MyParams(BaseParams):
    nn_encoder_name: str = "efficientnet-b0"
    nn_default_encoder_weights: str = "imagenet"
    image_shape: tuple[int, int] = (640, 640)
    num_epochs: int = 1000
    train_batch_size: int = 12
    val_batch_size: int | None = None

params = MyParams()
params.image_shape = (1024, 1024)
params.freeze()  # Freeze the parameters, making them immutable

Override Mechanisms

parametric provides multiple ways to override parameters. Below are examples of how you can override parameters using different methods.

1. Override from CLI

You can override parameters by passing them as command-line arguments when running the script.

Run the script with:

python script.py --num_epochs 500

This example shows how to override num_epochs using CLI arguments:

from parametric import BaseParams

class MyParams(BaseParams):
    num_epochs: int = 1000

params = MyParams()
params.override_from_cli()
params.freeze()

# NOTE: params.model_dump() is a function of pydantic.BaseModel we inherit from
print(params.model_dump())  # {'num_epochs': 500} 

2. Override from Environment Variables

You can override parameters by setting environment variables with a specified prefix before running the script.

Run the script with:

export _param_val_batch_size=32 && python script.py

This example shows how to override val_batch_size using environment variables:

from parametric import BaseParams

class MyParams(BaseParams):
    val_batch_size: int = 36

params = MyParams()
params.override_from_envs(env_prefix="_param_")
params.freeze()

print(params.model_dump())  # {'val_batch_size': 32}

3. Override from YAML File

You can override parameters by loading values from a YAML configuration file.

Example config.yaml:

train_batch_size: 8

This example shows how to override train_batch_size using values from config.yaml:

from parametric import BaseParams

class MyParams(BaseParams):
    train_batch_size: int = 12

params = MyParams()
params.override_from_yaml("config.yaml")
params.freeze()

print(params.model_dump())  # {'train_batch_size': 8}

4. Override from Dictionary

You can override parameters by passing a dictionary directly into the model.

from parametric import BaseParams

class MyParams(BaseParams):
    num_epochs: int = 1000

params = MyParams()
params.override_from_dict({"num_epochs": 500})
params.freeze()

print(params.model_dump())  # {'num_epochs': 500}

Opinionated Usage

This is how we like to use parametric in our pipeline:

  • We define a global params object in a dedicated module (e.g., params.py) to be shared across different modules in the pipeline.
  • After overrides and changes are applied (in the start of the pipe is the best), the parameters are frozen to prevent accidental mutation. Because all params are immutable, no-one will change them accidentally.
  • During development, we use a git-ignored YAML file (e.g., params.yaml) for configuration, allowing for easy debugging and experimentation without polluting the repository.

Let's see:

params.py (module to define the parameters and expose params):

from pathlib import Path  # NOTE: every time a developer switches from str/os.path to pathlib.Path, an angel gets his wings!

from parametric import BaseParams


class MyParams(BaseParams):
    data_dirs: tuple[Path, ...]
    image_shape: tuple[int, int] = (640, 640)
    nn_encoder_name: str = "efficientnet-b0"
    nn_default_encoder_weights: str = "imagenet"
    num_epochs: int = 1000
    train_batch_size: int = 12
    val_batch_size: int = 36

params = MyParams()

main.py:

from params import params
from module_a import run_pipeline


def main():

    params.override_from_yaml("params.yaml")

    # Optionally override via CLI
    params.override_from_cli()

    # Freeze the parameters to make them immutable
    params.freeze()

    # Proceed with the rest of the pipeline
    run_pipeline()


if __name__ == "__main__":
    main()

module_a.py:

from params import params  # This can be imported in many more files as needed


def run_pipeline(): 
    # do stuff with params... e.g.:
    val_loader = dataloader(params.val_batch_size)

params.yaml:

This file is git-ignored (again, just a suggestion), all params here are example for debug senerio that overrides the defaults

data_dirs:
  - "/path/to/data"
train_batch_size: 16
val_batch_size: 32

Contributing

Contributions are welcome! Please submit issues or pull requests on the GitHub repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

parametric-0.7.2.tar.gz (18.7 kB view details)

Uploaded Source

Built Distribution

parametric-0.7.2-py3-none-any.whl (14.2 kB view details)

Uploaded Python 3

File details

Details for the file parametric-0.7.2.tar.gz.

File metadata

  • Download URL: parametric-0.7.2.tar.gz
  • Upload date:
  • Size: 18.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for parametric-0.7.2.tar.gz
Algorithm Hash digest
SHA256 879c631c4581f2ab454243aac283c39e21c205cb74c94bd6defc943c1abc804b
MD5 a07e141ebe9fe8e3fc281a9a1b1c2575
BLAKE2b-256 5fb4faa2b375945199d956e50db59b5f2a3f029b31fbc948c4bd17ce2e1c6cd8

See more details on using hashes here.

File details

Details for the file parametric-0.7.2-py3-none-any.whl.

File metadata

  • Download URL: parametric-0.7.2-py3-none-any.whl
  • Upload date:
  • Size: 14.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for parametric-0.7.2-py3-none-any.whl
Algorithm Hash digest
SHA256 8bd21069f6841ecd35f39f74a050eb4df42939e7afdd018e0036ddddb2e8d638
MD5 8d63ade1d3524b115cdb18c912736466
BLAKE2b-256 01fe08bd642865988f65b261ff6466ce03868a228c2c6fc95c9d12151e69eceb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page