Parallel coordinates plotting
Project description
Parallel Coordinates Plotting for Python parcoords
This package implements a parallel-coordinate plot, commonly used in machine learning, i.e. for hyperparameter visualization.
Installation
The parcoords
package can be installed with pip:
pip install parcoords
You can also view the package on PyPI.
Usage
The following code produces the sample plot at the beginning of this page.
import matplotlib.pyplot as plt
from parcoords import plot_parcoords
# let's define some data to plot
values = [
[0.1, 10, "smote", 0.78],
[0.15, 9, "none", 0.46],
[0.18, 8, "rand_over", 0.67],
[0.01, 16, "rand_over", 0.84],
[0.01, 15, "smote", 0.86],
[0.015, 12, "smote", 0.87],
[0.03, 12, "smote", 0.81],
[0.12, 13, "none", 0.51],
[0.07, 11, "rand_over", 0.7],
[0.2, 14, "none", 0.55],
]
# plot the values as parallel-coordinate plot
plot_parcoords(
values,
labels=["lr", "# epochs", "sampling method", "accuracy"],
color_field="accuracy",
scale=[("lr", "log")],
title="Parallel-Coordinates of the Hyperparameters",
)
plt.show()
License
This repository is licensed under the MIT-License.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
parcoords-0.1.4.tar.gz
(5.0 kB
view details)
Built Distribution
File details
Details for the file parcoords-0.1.4.tar.gz
.
File metadata
- Download URL: parcoords-0.1.4.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b93b1b57fa7f8f41601fcf10048a460b96d6282eca8d4453ca9529d3761b808f |
|
MD5 | 1c4fa428c5d469d7006af07fbf3c1144 |
|
BLAKE2b-256 | f9764838bc9e07465915b8e825eaa5328a06c52f3227553436bca45b2dd7c3ef |
File details
Details for the file parcoords-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: parcoords-0.1.4-py3-none-any.whl
- Upload date:
- Size: 5.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0eb02413a4d1871c1199d2cb9b774099d240f3d58e76172ee7360e4e6929ed88 |
|
MD5 | 2a60f5ef770ee5d781ab6007b2f7adda |
|
BLAKE2b-256 | c1834756c3edb110432765f409b46906095ba9074292573375189c4e23c75f49 |