Pareto reflection based multi-objective optimization
Project description
Paref - using and building problem tailored MOO
A multi-objective optimization (MOO) problem comes with an idea of what properties identified (Pareto) points must satisfy. The fact that these characteristics are fulfilled is what makes a MOO successful in the first place. Why not construct a MOO algorithm which searches exactly for those properties? With the language of PAreto REFlections this is now possible. This package contains...
- a series of ready-to-use MOO algorithms corresponding to frequently targeted properties
- a framework for you to implement your problem tailored MOO algorithm
- generic and intuitive interfaces for MOO algorithms, black-box functions and more, so solving a MOO problem with user-defined properties with Paref requires only minimal effort
See the official documentation for more information.
Content
Installation
The official release is available at PyPi:
pip install paref
Usage
Solving an MOO problem with Paref consists of the following steps
- Define design and target space
- Define desired properties of Pareto points
- Initialize corresponding MOO algorithm
- Implement and initialize bbf
- Apply problem tailored MOO algorithm to blackbox function
This may look as follows:
- We use a mathematical test function with three input dimensions all between zero and one (i.e. design space is given by three-dimensional unit cube) and with two output dimensions (i.e. target space is the real plane)
- We want to have an idea of the "dimension" of the Pareto front (i.e. the Pareto points representing the minima in components) with minimum number of evaluations
- Accordingly, we choose the
FindEdgePoints
algorithm:
from paref.moo_algorithms.multi_dimensional.find_edge_points import FindEdgePoints
moo = FindEdgePoints()
- We implement and initialize the blackbox function in the Paref blackbox function interface
import numpy as np
from paref.black_box_functions.design_space.bounds import Bounds
from paref.interfaces.moo_algorithms.blackbox_function import BlackboxFunction
class TestFunction(BlackboxFunction):
def __call__(self, x: np.ndarray) -> np.ndarray:
y = np.array([np.sum(x**2),x[0]])
self._evaluations.append([x, y])
return y
@property
def dimension_design_space(self) -> int:
return 3
@property
def dimension_target_space(self) -> int:
return 2
@property
def design_space(self) -> Bounds:
return Bounds(upper_bounds=np.ones(self.dimension_design_space),
lower_bounds=-np.zeros(self.dimension_design_space))
blackbox_function = TestFunction()
- We apply the MOO algorithm to the blackbox function with a maximum number of five iterations and print the so found Pareto front:
from paref.moo_algorithms.stopping_criteria.max_iterations_reached import MaxIterationsReached
moo(blackbox_function = blackbox_function,
stopping_criteria = MaxIterationsReached(max_iterations=5))
print(f"Calculated Pareto front: {blackbox_function.pareto_front}")
What are properties of Pareto points?
A MOO problem comes with an idea of what properties identified (Pareto) points must satisfy. The fact that these characteristics are fulfilled is what makes a MOO successful in the first place.
In mathematical terms, we understand properties of Pareto points as being element of a (mostly implicit defined) subset of the Pareto front.
They include but are certainly not limited to the following:
Property | Graphic | Example | Algorithm(s) | Sequence | Pareto reflection |
---|---|---|---|---|---|
Being an edge point | FindEdgePoints |
FindEdgePointsSequence |
|||
Filling a gap | FillGap2D |
||||
Being evenly distributed | FindEdgePoints followed by FillGapsOfParetoFront2D |
||||
Being constrained to a defined area | RestrictByPoint |
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file paref-0.1.7.tar.gz
.
File metadata
- Download URL: paref-0.1.7.tar.gz
- Upload date:
- Size: 26.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4ec57c56e42c5498700fd76711f3624f2abd2a401d1be2dbeeb4cca8fa7cd753 |
|
MD5 | 11c5763ef07eea6d4f330b6864f58e55 |
|
BLAKE2b-256 | 57e73ea7d1ae378bdaaea4871b0809762bc4867688b978ca3cf9c81bed98d3ba |
File details
Details for the file paref-0.1.7-py3-none-any.whl
.
File metadata
- Download URL: paref-0.1.7-py3-none-any.whl
- Upload date:
- Size: 44.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e2534211334e76cee00f472d120bc6fb105edce5ccdfa3405596d5123b2e44e6 |
|
MD5 | 48055f760fe436b1cb2e4fe9ffa63153 |
|
BLAKE2b-256 | 4c165db5547191c2709bd2e6cc9d58929e794977acb7ca100518bfc493952e14 |