Skip to main content

Unified platform for dialogue research.

Project description


ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dialogue, to visual question answering.

Its goal is to provide researchers:

ParlAI is described in the following paper: “ParlAI: A Dialog Research Software Platform", arXiv:1705.06476 or see these more up-to-date slides.

Follow us on Twitter and check out our Release notes to see the latest information about new features & updates, and the website http://parl.ai for further docs. For an archived list of updates, check out NEWS.md.

Interactive Tutorial

For those who want to start with ParlAI now, you can try our Colab Tutorial.

Installing ParlAI

ParlAI currently requires Python3.7+ and Pytorch 1.6 or higher. Dependencies of the core modules are listed in requirements.txt. Some models included (in parlai/agents) have additional requirements. We strongly recommend you install ParlAI in a venv or conda environment.

Standard Installation

If you want to use ParlAI without modifications, you can install it with:

pip install parlai

Development Installation

Many users will want to modify some parts of ParlAI. To set up a development environment, run the following commands to clone the repository and install ParlAI:

git clone https://github.com/facebookresearch/ParlAI.git ~/ParlAI
cd ~/ParlAI; python setup.py develop

All needed data will be downloaded to ~/ParlAI/data. If you need to clear out the space used by these files, you can safely delete these directories and any files needed will be downloaded again.

Documentation

Examples

A large set of scripts can be found in parlai/scripts. Here are a few of them. Note: If any of these examples fail, check the installation section to see if you have missed something.

Display 10 random examples from the SQuAD task

parlai display_data -t squad

Evaluate an IR baseline model on the validation set of the Personachat task:

parlai eval_model -m ir_baseline -t personachat -dt valid

Train a single layer transformer on PersonaChat (requires pytorch and torchtext). Detail: embedding size 300, 4 attention heads, 2 epochs using batchsize 64, word vectors are initialized with fasttext and the other elements of the batch are used as negative during training.

parlai train_model -t personachat -m transformer/ranker -mf /tmp/model_tr6 --n-layers 1 --embedding-size 300 --ffn-size 600 --n-heads 4 --num-epochs 2 -veps 0.25 -bs 64 -lr 0.001 --dropout 0.1 --embedding-type fasttext_cc --candidates batch

Code Organization

The code is set up into several main directories:

  • core: contains the primary code for the framework
  • agents: contains agents which can interact with the different tasks (e.g. machine learning models)
  • scripts: contains a number of useful scripts, like training, evaluating, interactive chatting, ...
  • tasks: contains code for the different tasks available from within ParlAI
  • mturk: contains code for setting up Mechanical Turk, as well as sample MTurk tasks
  • messenger: contains code for interfacing with Facebook Messenger
  • utils: contains a wide number of frequently used utility methods
  • crowdsourcing: contains code for running crowdsourcing tasks, such as on Amazon Mechanical Turk
  • chat_service: contains code for interfacing with services such as Facebook Messenger
  • zoo: contains code to directly download and use pretrained models from our model zoo

Support

If you have any questions, bug reports or feature requests, please don't hesitate to post on our Github Issues page. You may also be interested in checking out our FAQ and our Tips n Tricks.

Please remember to follow our Code of Conduct.

Contributing

We welcome PRs from the community!

You can find information about contributing to ParlAI in our Contributing document.

The Team

ParlAI is currently maintained by Moya Chen, Emily Dinan, Dexter Ju, Mojtaba Komeili, Spencer Poff, Pratik Ringshia, Stephen Roller, Kurt Shuster, Eric Michael Smith, Megan Ung, Jack Urbanek, Jason Weston, Mary Williamson, and Jing Xu. Stephen Roller is the current Tech Lead.

Former major contributors and maintainers include Alexander H. Miller, Margaret Li, Will Feng, Adam Fisch, Jiasen Lu, Antoine Bordes, Devi Parikh, Dhruv Batra, Filipe de Avila Belbute Peres, Chao Pan, and Vedant Puri.

Citation

Please cite the arXiv paper if you use ParlAI in your work:

@article{miller2017parlai,
  title={ParlAI: A Dialog Research Software Platform},
  author={{Miller}, A.~H. and {Feng}, W. and {Fisch}, A. and {Lu}, J. and {Batra}, D. and {Bordes}, A. and {Parikh}, D. and {Weston}, J.},
  journal={arXiv preprint arXiv:{1705.06476}},
  year={2017}
}

License

ParlAI is MIT licensed. See the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

parlai-1.4.0.tar.gz (848.6 kB view details)

Uploaded Source

Built Distribution

parlai-1.4.0-py3-none-any.whl (1.4 MB view details)

Uploaded Python 3

File details

Details for the file parlai-1.4.0.tar.gz.

File metadata

  • Download URL: parlai-1.4.0.tar.gz
  • Upload date:
  • Size: 848.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.9

File hashes

Hashes for parlai-1.4.0.tar.gz
Algorithm Hash digest
SHA256 b33a3d9943292ca60a70f79aad805726efdf9a5faad458df5f517abc29b80859
MD5 bbaccbf337134986f09f414dd771ca49
BLAKE2b-256 9d018746774c1a82bfb8902249ee7c3dbb87194bdc49c1fb8d6415ca28cc1bf1

See more details on using hashes here.

File details

Details for the file parlai-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: parlai-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.9

File hashes

Hashes for parlai-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d1b1bf0a0ed379aed0b726b60813f3afd5fea0dd36d190b9da47380016b5402e
MD5 d4cfb696bf90d225a9cae9c8161f2ef3
BLAKE2b-256 b305c3144a63465a3884a891af421d3abca330e40a078e754e372bbcff2713eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page