Skip to main content

map and starmap implementations passing additional arguments and parallelizing if possible

Project description

https://travis-ci.org/zeehio/parmap.svg?branch=master Documentation Status http://codecov.io/github/zeehio/parmap/coverage.svg?branch=master Pypi downloads per month

This small python module implements two functions: map and starmap.

What does parmap offer?

  • Provide an easy to use syntax for both map and starmap.

  • Parallelize transparently whenever possible.

  • Handle multiple (positional -for now-) arguments as needed.

Installation:

pip install parmap

Usage:

Here are some examples with some unparallelized code parallelized with parmap:

import parmap
# You want to do:
y = [myfunction(x, argument1, argument2) for x in mylist]
# In parallel:
y = parmap.map(myfunction, mylist, argument1, argument2)

# You want to do:
z = [myfunction(x, y, argument1, argument2) for (x,y) in mylist]
# In parallel:
z = parmap.starmap(myfunction, mylist, argument1, argument2)

# You want to do:
listx = [1, 2, 3, 4, 5, 6]
listy = [2, 3, 4, 5, 6, 7]
param = 3.14
param2 = 42
listz = []
for (x, y) in zip(listx, listy):
    listz.append(myfunction(x, y, param1, param2))
# In parallel:
listz = parmap.starmap(myfunction, zip(listx, listy), param1, param2)

map (and starmap on python 3.3) already exist. Why reinvent the wheel?

Please correct me if I am wrong, but from my point of view, existing functions have some usability limitations:

  • The built-in python function map [1] is not able to parallelize.

  • multiprocessing.Pool().starmap [2] is only available in python-3.3 and later versions.

  • multiprocessing.Pool().map [3] does not allow any additional argument to the mapped function.

  • multiprocessing.Pool().starmap allows passing multiple arguments, but in order to pass a constant argument to the mapped function you will need to convert it to an iterator using itertools.repeat(your_parameter) [4]

parmap aims to overcome this limitations in the simplest possible way.

Additional features in parmap:

  • Create a pool for parallel computation automatically if possible.

  • parmap.map(..., ..., parallel=False) # disables parallelization

  • parmap.map(..., ..., chunksize=3) # size of chunks (see multiprocessing.Pool().map)

  • parmap.map(..., ..., pool=multiprocessing.Pool()) # use an existing pool, in this case parmap will not close the pool.

To do:

Pull requests and suggestions are welcome.

  • Pass keyword arguments to functions?

Acknowledgments:

The original idea for this implementation was given by J.F. Sebastian. I just provided an alternative answer implementing it in a package.

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

parmap-1.2.3.tar.gz (15.6 kB view details)

Uploaded Source

File details

Details for the file parmap-1.2.3.tar.gz.

File metadata

  • Download URL: parmap-1.2.3.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for parmap-1.2.3.tar.gz
Algorithm Hash digest
SHA256 7437566648f505d63b00429cb65538f08b9a4e45c6ec958af9e77a69512588bd
MD5 44179108f54015dabf7e46d17ee61851
BLAKE2b-256 e27cfa3106ea0f3e4624a356b0155a8141f3ffd69e24aefa7d608f2baf438ba4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page