Skip to main content

Adds ensemble clustering (ecg) and graph-aware measures (gam) to igraph.

Project description

Graph Partition and Measures

Python3 code implementing 11 graph-aware measures (gam) for comparing graph partitions as well as a stable ensemble-based graph partition algorithm (ecg). This verion works with the igraph package. A version for networkx is also available: partition-networkx.

Graph aware measures (gam)

The measures are respectively:

  • 'rand': the RAND index
  • 'jaccard': the Jaccard index
  • 'mn': pairwise similarity normalized with the mean function
  • 'gmn': pairwise similarity normalized with the geometric mean function
  • 'min': pairwise similarity normalized with the minimum function
  • 'max': pairwise similarity normalized with the maximum function

Each measure can be adjusted (recommended) or not, except for 'jaccard'. Details can be found in:

Valérie Poulin and François Théberge, "Comparing Graph Clusterings: Set partition measures vs. Graph-aware measures", https://arxiv.org/abs/1806.11494.

Ensemble clustering for graphs (ecg)

This is a good, stable graph partitioning algorithm. Details for ecg can be found in:

Valérie Poulin and François Théberge, "Ensemble clustering for graphs: comparisons and applications", Appl Netw Sci 4, 51 (2019). https://doi.org/10.1007/s41109-019-0162-z

Example

We need to import the supplied Python file partition_igraph.

import numpy as np
import igraph as ig
import partition_igraph

Next, let's build a graph with communities.

P = np.full((10,10),.025)
np.fill_diagonal(P,.1)
## 1000 nodes, 10 communities
g = ig.Graph.Preference(n=1000, type_dist=list(np.repeat(.1,10)),
                        pref_matrix=P.tolist(),attribute='class')
## the 'ground-truth' communities
tc = {k:v for k,v in enumerate(g.vs['class'])}

Run Louvain and ecg:

ml = g.community_multilevel()
ec = g.community_ecg(ens_size=32)

Finally, we show a few examples of measures we can compute with gam:

## for 'gam' partition are either 'igraph.clustering.VertexClustering' or 'dict'
print('Adjusted Graph-Aware Rand Index for Louvain:',g.gam(ml,tc))
print('Adjusted Graph-Aware Rand Index for ECG:',g.gam(ec,tc))
print('\nJaccard Graph-Aware for Louvain:',g.gam(ml,tc,method="jaccard",adjusted=False))
print('Jaccard Graph-Aware for ECG:',g.gam(ec,tc,method="jaccard",adjusted=False))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

partition_igraph-0.0.4.tar.gz (4.8 kB view details)

Uploaded Source

Built Distribution

partition_igraph-0.0.4-py3-none-any.whl (5.7 kB view details)

Uploaded Python 3

File details

Details for the file partition_igraph-0.0.4.tar.gz.

File metadata

  • Download URL: partition_igraph-0.0.4.tar.gz
  • Upload date:
  • Size: 4.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.9

File hashes

Hashes for partition_igraph-0.0.4.tar.gz
Algorithm Hash digest
SHA256 8d6bb841960fc548f33b9323fd53d94dafd935e76960afac3edda2440fd4db69
MD5 f2ddfc22a656b670c135ad15df84960c
BLAKE2b-256 260c00ac078c35226c3e21b96699cf5afaff85ebc87aa1336ed1307ae77ca339

See more details on using hashes here.

File details

Details for the file partition_igraph-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: partition_igraph-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 5.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.9

File hashes

Hashes for partition_igraph-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 2809df9d5d130f2507f37e0e6cd66924979cf5d57f521bf99bdcc3320e61f8c8
MD5 6b179bfaba1ef6b9d036612e170cb10d
BLAKE2b-256 ce743627e829f3d4eb131f7d00177a79167f11318a03ea1ad81dbe8779066ab2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page