Skip to main content

Tool to work with annotation formats

Project description

pascal

Python utility to work with PascalVoc annotation format

Image examples from PascalVoc2007 dataset

Code Example
import json
from pathlib import Path

from PIL import Image

from pascal import annotation_from_xml
from pascal.utils import save_xml

ds_path = Path("/home/VOCtest_06-Nov-2007/VOCdevkit/VOC2007")

img_src = ds_path / "JPEGImages"
ann_src = ds_path / "Annotations"

out_labelme = ds_path / "converted_labelme"

attr_type_spec = {"truncated": bool, "difficult": bool}

label_map = {"car": 1, "dog": 0, "person": 2, "train": 3}

if __name__ == "__main__":
    for file in img_src.glob("*.jpg"):
        # Get annotation file path
        ann_file = (ann_src / file.name).with_suffix(".xml")
        # Make pascal annotation object
        ann = annotation_from_xml(ann_file, attr_type_spec)
        print(ann)
        # Save to xml file (same as ann_file)
        xml = ann.to_xml()
        out_xml_name = file.with_suffix(".xml").name
        save_xml(out_xml_name, xml)
        # Save yolo annotation
        yolo_ann = ann.to_yolo(label_map)
        out_yolo_name = file.with_suffix(".txt").name
        with open(out_yolo_name, "w") as f:
            f.write(yolo_ann)
        # Convert to labelme and save json file
        res = ann.to_labelme(file, save_img_data=False)
        with open((out_labelme / file.name).with_suffix(".json"), "w") as f:
            json.dump(res, f, indent=2)
        # Draw objects
        img = Image.open(file)
        draw_img = ann.draw_boxes(img)
        draw_img.show()
Visualization example:
draw_img = ann.draw_boxes(img)
draw_img.show()

vis_example

Installation

From source

python setup.py install

Using pip

pip install pascal-voc

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pascal_voc-2.1.3.tar.gz (218.2 kB view details)

Uploaded Source

Built Distribution

pascal_voc-2.1.3-py3-none-any.whl (425.7 kB view details)

Uploaded Python 3

File details

Details for the file pascal_voc-2.1.3.tar.gz.

File metadata

  • Download URL: pascal_voc-2.1.3.tar.gz
  • Upload date:
  • Size: 218.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for pascal_voc-2.1.3.tar.gz
Algorithm Hash digest
SHA256 ac5b4bb2329f693d71885fa7e18fa8fd6d1d94b20c0a01051aa4e0af59afb11c
MD5 709ea354486f74212428ec8f9c91e905
BLAKE2b-256 d088d4c8f01cd7740a3a782da47c8093e6b847046926b6246d411b0f9b1ff1e8

See more details on using hashes here.

File details

Details for the file pascal_voc-2.1.3-py3-none-any.whl.

File metadata

  • Download URL: pascal_voc-2.1.3-py3-none-any.whl
  • Upload date:
  • Size: 425.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for pascal_voc-2.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 5e9364306440d95f04710bd1ffcf824d59c6617db65e4eecfc4fa287e3d1fc62
MD5 006c4a23a5589c56d89254441da23b43
BLAKE2b-256 711fcd779c13838a90c3c2b89111ff3dd893af7fb1a42dcb249952c8a8bfaddd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page