Tool to work with annotation formats
Project description
pascal
Python utility to work with PascalVoc annotation format
Image examples from PascalVoc2007 dataset
Code Example
import json
from pathlib import Path
from PIL import Image
from pascal import annotation_from_xml
from pascal.utils import save_xml
ds_path = Path("/home/VOCtest_06-Nov-2007/VOCdevkit/VOC2007")
img_src = ds_path / "JPEGImages"
ann_src = ds_path / "Annotations"
out_labelme = ds_path / "converted_labelme"
attr_type_spec = {"truncated": bool, "difficult": bool}
label_map = {"car": 1, "dog": 0, "person": 2, "train": 3}
if __name__ == "__main__":
for file in img_src.glob("*.jpg"):
# Get annotation file path
ann_file = (ann_src / file.name).with_suffix(".xml")
# Make pascal annotation object
ann = annotation_from_xml(ann_file, attr_type_spec)
print(ann)
# Save to xml file (same as ann_file)
xml = ann.to_xml()
out_xml_name = file.with_suffix(".xml").name
save_xml(out_xml_name, xml)
# Save yolo annotation
yolo_ann = ann.to_yolo(label_map)
out_yolo_name = file.with_suffix(".txt").name
with open(out_yolo_name, "w") as f:
f.write(yolo_ann)
# Convert to labelme and save json file
res = ann.to_labelme(file, save_img_data=False)
with open((out_labelme / file.name).with_suffix(".json"), "w") as f:
json.dump(res, f, indent=2)
# Draw objects
img = Image.open(file)
draw_img = ann.draw_boxes(img)
draw_img.show()
Visualization example:
draw_img = ann.draw_boxes(img)
draw_img.show()
Installation
From source
python setup.py install
Using pip
pip install pascal-voc
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pascal_voc-2.1.5.tar.gz
(218.8 kB
view details)
Built Distribution
pascal_voc-2.1.5-py3-none-any.whl
(425.9 kB
view details)
File details
Details for the file pascal_voc-2.1.5.tar.gz
.
File metadata
- Download URL: pascal_voc-2.1.5.tar.gz
- Upload date:
- Size: 218.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2b6bf12ebaa11718a67f4dbff6fa4b0b2a594b36b53662bd93dd7e762a2cc045 |
|
MD5 | 0fe7f323093cfa2e6bc47a9fabc98145 |
|
BLAKE2b-256 | 926006c61f1029d5e7a74afa0b871bd929ca8ff0a45f43305ff2656a6700d580 |
File details
Details for the file pascal_voc-2.1.5-py3-none-any.whl
.
File metadata
- Download URL: pascal_voc-2.1.5-py3-none-any.whl
- Upload date:
- Size: 425.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 07be3c2ba06c84e69e993b346caf175beabdfc3b898ee4c58211b88b8c558914 |
|
MD5 | 9b435f0b8530caa7afdde4e5ce506dba |
|
BLAKE2b-256 | 1da1b238f1e44d0089d9f1f0444ab8fa8cb06f5d2dfe03d4b89fce9a84292a82 |