Skip to main content

Patient-Specific Modeling in Python

Project description

Pasmopy – Patient-Specific Modeling in Python

overview

PyPI version Actions Status Documentation Status License Downloads PyPI pyversions Language grade: Python pre-commit.ci status Code style: black Imports: isort

Pasmopy is a scalable toolkit to identify prognostic factors for cancers based on intracellular signaling dynamics generated from personalized kinetic models. It is compatible with biomass and offers the following features:

  • Construction of mechanistic models from text
  • Personalization of the model using transcriptome data
  • Prediction of patient outcome based on in silico signaling dynamics
  • Sensitivity analysis for prediction of potential drug targets

Documentation

The documentation is hosted on readthedocs.io: https://pasmopy.readthedocs.io

Installation

The latest stable release (and required dependencies) can be installed from PyPI:

$ pip install pasmopy

Pasmopy requires Python 3.7+ to run.

Example

Building mathematical models of biochemical systems from text

This example shows you how to build a simple Michaelis-Menten two-step enzyme catalysis model with Pasmopy.

E + S ⇄ ES → E + P

An enzyme, E, binding to a substrate, S, to form a complex, ES, which in turn releases a product, P, regenerating the original enzyme.

  1. Prepare a text file describing the biochemical reactions (e.g., michaelis_menten.txt)

    E binds S --> ES | kf=0.003, kr=0.001 | E=100, S=50
    ES dissociates to E and P | kf=0.002, kr=0
    
    @obs Substrate: u[S]
    @obs E_free: u[E]
    @obs E_total: u[E] + u[ES]
    @obs Product: u[P]
    @obs Complex: u[ES]
    
    @sim tspan: [0, 100]
    
  2. Convert the text into an executable model

    $ python
    
    >>> from pasmopy import Text2Model
    >>> description = Text2Model("michaelis_menten.txt")
    >>> description.convert()
    
  3. Run simulation

    >>> from pasmopy import Model, run_simulation
    >>> import michaelis_menten
    >>> model = Model(michaelis_menten.__package__).create()
    >>> run_simulation(model)
    

    michaelis_menten

For more examples, please refer to the Documentation.

Personalized signaling models for cancer patient stratification

Using Pasmopy, we built a mechanistic model of ErbB receptor signaling network, trained with protein quantification data obtained from cultured cell lines, and performed in silico simulation of the pathway activities on 377 breast cancer patients using The Cancer Genome Atlas (TCGA) transcriptome datasets. All the codes for model construction, patient-specific simulations, and model-based stratification can be found here: https://github.com/pasmopy/breast_cancer.

Author

Hiroaki Imoto

License

Apache License 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pasmopy-0.0.7.tar.gz (35.6 kB view details)

Uploaded Source

Built Distribution

pasmopy-0.0.7-py3-none-any.whl (38.3 kB view details)

Uploaded Python 3

File details

Details for the file pasmopy-0.0.7.tar.gz.

File metadata

  • Download URL: pasmopy-0.0.7.tar.gz
  • Upload date:
  • Size: 35.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for pasmopy-0.0.7.tar.gz
Algorithm Hash digest
SHA256 f0d12c65b0c39d384f9d06e8a125af9a44d3a698984859d68c303bf48f834c04
MD5 c499bd4d19dfa967df327c87df7989f3
BLAKE2b-256 33ea0c6e407ada153176f4fa5f193688fa71991eb37bf1c7bff9a9db698b09ff

See more details on using hashes here.

File details

Details for the file pasmopy-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: pasmopy-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 38.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for pasmopy-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 9e268158a8e76de728c49b14c986acf9123a66e5970e3e92ddc7884589f12eb5
MD5 dc28047c5f9259f0e09c24d2e5814975
BLAKE2b-256 b4b9a3ef48cd263da77668db9c099ef8a65ea3a34ae2d2510d5dc5731a0a1aae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page