Skip to main content

Patient-Specific Modeling in Python

Project description

Pasmopy – Patient-Specific Modeling in Python

overview

PyPI version Actions Status Documentation Status License Downloads PyPI pyversions Language grade: Python pre-commit.ci status Code style: black Imports: isort

Pasmopy is a scalable toolkit to identify prognostic factors for cancers based on intracellular signaling dynamics generated from personalized kinetic models. It is compatible with biomass and offers the following features:

  • Construction of mechanistic models from text
  • Personalization of the model using transcriptome data
  • Prediction of patient outcome based on in silico signaling dynamics
  • Sensitivity analysis for prediction of potential drug targets

Installation

The latest stable release (and required dependencies) can be installed from PyPI:

$ pip install pasmopy

Pasmopy requires Python 3.7+ to run.

Example

Building mathematical models of biochemical systems from text

This example shows you how to build a simple Michaelis-Menten two-step enzyme catalysis model with Pasmopy.

E + S ⇄ ES → E + P

An enzyme, E, binding to a substrate, S, to form a complex, ES, which in turn releases a product, P, regenerating the original enzyme.

  1. Prepare a text file describing the biochemical reactions (e.g., michaelis_menten.txt)

    E binds S <--> ES | kf=0.003, kr=0.001 | E=100, S=50
    ES dissociates to E and P | kf=0.002, kr=0
    
    @obs Substrate: u[S]
    @obs E_free: u[E]
    @obs E_total: u[E] + u[ES]
    @obs Product: u[P]
    @obs Complex: u[ES]
    
    @sim tspan: [0, 100]
    
  2. Convert the text into an executable model

    $ python
    
    >>> from pasmopy import Text2Model
    >>> description = Text2Model("michaelis_menten.txt")
    >>> description.convert()
    
  3. Run simulation

    >>> from pasmopy import Model, run_simulation
    >>> import michaelis_menten
    >>> model = Model(michaelis_menten.__package__).create()
    >>> run_simulation(model)
    

    michaelis_menten

For more examples, please refer to the Documentation.

Personalized signaling models for cancer patient stratification

Using Pasmopy, we built a mechanistic model of ErbB receptor signaling network, trained with protein quantification data obtained from cultured cell lines, and performed in silico simulation of the pathway activities on 377 breast cancer patients using The Cancer Genome Atlas (TCGA) transcriptome datasets. All code for model construction, patient-specific simulations, and model-based stratification can be found here: https://github.com/pasmopy/breast_cancer.

Author

Hiroaki Imoto

License

Apache License 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pasmopy-0.0.8.tar.gz (36.1 kB view details)

Uploaded Source

Built Distribution

pasmopy-0.0.8-py3-none-any.whl (38.8 kB view details)

Uploaded Python 3

File details

Details for the file pasmopy-0.0.8.tar.gz.

File metadata

  • Download URL: pasmopy-0.0.8.tar.gz
  • Upload date:
  • Size: 36.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for pasmopy-0.0.8.tar.gz
Algorithm Hash digest
SHA256 7d4f0ae7fa6ebe61eec60e72d5c894e9d4a5cefa7b0c4af174acea22379adfe3
MD5 2300084aa8b0e863c04be47f9c12ed8d
BLAKE2b-256 5dace47c52dfd752560484477b655b1ed8c978cefd7cea2dbc845b2ab46f183f

See more details on using hashes here.

File details

Details for the file pasmopy-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: pasmopy-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 38.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for pasmopy-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 4c4410abb3a27984223be1d8d551fbd96b1da00e7c27252dac9f1cb8b7ee3184
MD5 b85ce1b1f61396e71992d418b2e1d881
BLAKE2b-256 1446874632c9c030ae7f692c9b720fbe2b5532b00126f712486240f2df162ad1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page