Skip to main content

Pipelines And Systems for Threshold Avoiding Quantification (PASTAQ): Pre-processing tools for LC-MS/MS data

Project description

Test PASTAQ on binder

Binder

Installation

To install from source, you will need to install a suitable C++ compiler and corresponding build tools for your platform as well as CMake. The instructions listed here refer to the installation of PASTAQ's Python bindings. Currently the only external dependencies, including zlib, are included as git submodules.

To get started, clone this repository and initialize git submodules:

git clone https://github.com/PASTAQ-MS/PASTAQ.git
cd PASTAQ
git submodule init
git submodule update --remote

As usual, it is strongly recommended to create a Python 3 environment in which to build Pastaq, and the core development has been with Python 3.9, but 3.10, 3.11 and 3.12 should also work.

python -m pip install --upgrade pip
python -m pip install build
python -m pip install wheel

# create the .whl file in the ./dist folder
python -m build --installer pip --wheel

Windows

When building Pastaq in Windows, it may be helpful to first open a Visual Studio command prompt using Tools->Visual Studio Command Prompt in the Visual Studio IDE so that you have access to the compiler and linker. Then, in that command window, activate your PASTAQ Python environment and proceed with the instructions.

Powershell

Get-ChildItem ./dist/*.whl | ForEach-Object { pip install $_.FullName }

CMD command prompt

for %f in (./dist\*.whl) do pip install %f

Linux

find ./dist/*.whl | xargs pip install 

Now it can be imported and used in python as follows:

import pastaq
raw_data = pastaq.read_mzxml(...)

Usage

Examples of the usage of the PASTAQ can be found in the examples folder. To run them, install pastaq as previously described, update the input path of the mzXML and mzID files, change any necessary parameters and run it with:

python examples/small_range.py

You can use any mzXML files and identifications in mzIdentML v1.1+. If no identifications are available, remove the ident_path from the input files array or set it to 'none'. You can find the files we used for testing and development via ProteomeXchange, with identifier PXD024584.

Processing of mzML files is in an early stage and may lead to some issues.

For more information about PASTAQ and the configuration of the parameters, please visit the official website.

How to cite this work

The main manuscript has been published in as Open Access Analytical Chemistry with the following details: Alejandro Sánchez Brotons, Jonatan O. Eriksson, Marcel Kwiatkowski, Justina C. Wolters, Ido P. Kema, Andrei Barcaru, Folkert Kuipers, Stephan J. L. Bakker, Rainer Bischoff, Frank Suits, and Péter Horvatovich, Pipelines and Systems for Threshold-Avoiding Quantification of LC–MS/MS Data, Analytical Chemistry, 2021, 93, 32, 11215–11224.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pastaq-0.11.1-cp312-cp312-win_amd64.whl (486.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

pastaq-0.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (781.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pastaq-0.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (782.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pastaq-0.11.1-cp310-cp310-win_amd64.whl (485.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

pastaq-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (781.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pastaq-0.11.1-cp39-cp39-win_amd64.whl (478.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

pastaq-0.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (781.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pastaq-0.11.1-cp38-cp38-win_amd64.whl (485.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

pastaq-0.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (781.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pastaq-0.11.1-cp37-cp37m-win_amd64.whl (484.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

pastaq-0.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (786.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pastaq-0.11.1-cp36-cp36m-win_amd64.whl (484.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

pastaq-0.11.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (786.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file pastaq-0.11.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pastaq-0.11.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 486.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for pastaq-0.11.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9f16614ce3e29718e2df1810d896405b633a80b624de0e87fedf57ac2de5acf6
MD5 652df295efffcce05a1bacaac2417523
BLAKE2b-256 08be207e9856d30fc32a492e705cfaf26d1847f6671fe015b23ed05ea9fd523b

See more details on using hashes here.

File details

Details for the file pastaq-0.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pastaq-0.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2804f3ab83260603309f3ec7e3e81c31272b91c770de2704fd5333a84c81b3d4
MD5 948de2cbd2a418e2de53389452de8ee7
BLAKE2b-256 561fa11258e495894cd31190515e9f009bc610b953c7cc6414f6780332fef9f9

See more details on using hashes here.

File details

Details for the file pastaq-0.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pastaq-0.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff06b0f04dc23cc621ac0d142c5edded30257ccac17dd5c37f3e8f38ad5a6f6c
MD5 c1623393f5df0048cc7e94cbbcc3aec9
BLAKE2b-256 000c3180c79b7d02f796645941f99572363e638c9fbd1739c47e26c973cacf3d

See more details on using hashes here.

File details

Details for the file pastaq-0.11.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pastaq-0.11.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 485.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.9

File hashes

Hashes for pastaq-0.11.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b8132da114ec2d30c1830ce186416018f6172194cbf48698d185ccdf00b50c66
MD5 c561655495a508c9fba765d78d79bebe
BLAKE2b-256 bea5a7c2bc3d40d85cc374b3a43031270a8f93d6e21b972d000eb732420e0b2e

See more details on using hashes here.

File details

Details for the file pastaq-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pastaq-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 115050aee715f22d97a5b2e1d1921eaf46482d5fb9d76f2dc6e741ef8160aa94
MD5 1d6a839f08fefc3c59c5b58f14e2220b
BLAKE2b-256 69f4e7e78e1f82892efa67538b3a8c77c1e20f780c70776f2d2b3e396d7dfd54

See more details on using hashes here.

File details

Details for the file pastaq-0.11.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pastaq-0.11.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 478.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.0

File hashes

Hashes for pastaq-0.11.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 00b340624e5b308e6260d6470dde2d580a8423543a0d4d3e597eabf9fe7c380c
MD5 b004ee4da0fe764502f9599d2805a5be
BLAKE2b-256 cab6eb45f51b19122656d72679be9ced337d45dc308b4a983072eb8740d95714

See more details on using hashes here.

File details

Details for the file pastaq-0.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pastaq-0.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 708433b04485733b78930f41a66ab7a961af24885c400507891c9ccd0ce06798
MD5 ef7e19469cbf0b9a5cc75d8536b106bc
BLAKE2b-256 0c3caaf41b9652f448fb5e87aebf62a60a7383a8e59b79570d647f85c9ca86db

See more details on using hashes here.

File details

Details for the file pastaq-0.11.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pastaq-0.11.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 485.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.8.6

File hashes

Hashes for pastaq-0.11.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5ddeb57efcc89aa117d7b8ed8e74cfcabb43b20a24258da19f5f756c02dd51aa
MD5 e1acb1138d4ed33bf96b6d51b87f97f7
BLAKE2b-256 2ec6500659725ba337f528cf1171fcc82b5d7e90f55b03113214d6c62fb21456

See more details on using hashes here.

File details

Details for the file pastaq-0.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pastaq-0.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9341b7180f71790d07eedd91c628b0d2b4747b9e3e16cd59c0abb60cdf4f9196
MD5 5d5c000bbaddd0fca34bd68b3b0ddde7
BLAKE2b-256 8571d7852d11c90aeb795595fcbd1508c6ff1bc3f315fd3ad5c7d37112c458ef

See more details on using hashes here.

File details

Details for the file pastaq-0.11.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pastaq-0.11.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 484.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for pastaq-0.11.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8f9b10c53476afd702f5486056147188c3d7aeff5f01e9cf61129ce869b02c52
MD5 804d46ab89c6dd495accaa96a4916b43
BLAKE2b-256 e2f09d358f2c90372aa631cf97291a0e1f44e7500ed7e5d8ad6f16a8fecb1438

See more details on using hashes here.

File details

Details for the file pastaq-0.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pastaq-0.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d39e5fe5ffb57242e382d1e15b7ab0cb0f9dafc504ba920a511c3ced13a7174d
MD5 f2119c694cc02f66e185c038c1b924d2
BLAKE2b-256 7325c20bc426ab4bff0f64825952ff0850bb596fff7a7bca252c61db4fc8a4d8

See more details on using hashes here.

File details

Details for the file pastaq-0.11.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pastaq-0.11.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 484.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.10.0 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.18 tqdm/4.64.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.5

File hashes

Hashes for pastaq-0.11.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4e1f5af88fc0df7b937bad6b760eab0e922ab303a9b3bd19ab6d9bddae0a8775
MD5 616f29fb2c013223a587b7d5433c592e
BLAKE2b-256 880982c5d0062218c7e144f5568102f1bf244c445befa9f43995820a499180aa

See more details on using hashes here.

File details

Details for the file pastaq-0.11.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pastaq-0.11.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4014f8c69343e46888105f19be9790655befd3388ac1a7650676fe27cf951887
MD5 94df408c4562b91ceabce0763bb8c746
BLAKE2b-256 ebc799830e25b79d8a19ec956717d707896e84e18f2ffcd60516f5544d4bef94

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page