Skip to main content

Pathfinding algorithms in 3D (based on python-pathfinding)

Project description

Pathfinding3D

MIT License PyPI Pipeline codecov codestyle

Pathfinding algorithms for python3 froked from python-pathfinding by @brean.

Pathfinding3D is a comprehensive library designed for 3D pathfinding applications.

Currently there are 7 path-finders bundled in this library, namely:

  • A*: Versatile and most widely used algorithm.
  • Dijkstra: A* without heuristic.
  • Best-First
  • Bi-directional A*: Efficient for large graphs with a known goal.
  • Breadth First Search (BFS)
  • Iterative Deeping A* (IDA*): Memory efficient algorithm for large graphs.
  • Minimum Spanning Tree (MSP)

Dijkstra, A* and Bi-directional A* take the weight of the fields on the map into account.

Installation

Requirements

  • python >= 3.8
  • numpy

To install Pathfinding3D, use pip:

pip install pathfinding3d

For more details, see pathfinding3d on pypi

Usage examples

For a quick start, here's a basic example:

import numpy as np

from pathfinding3d.core.diagonal_movement import DiagonalMovement
from pathfinding3d.core.grid import Grid
from pathfinding3d.finder.a_star import AStarFinder

# Create a 3D numpy array with 0s as obstacles and 1s as walkable paths
matrix = np.ones((10, 10, 10), dtype=np.int8)
# mark the center of the grid as an obstacle
matrix[5, 5, 5] = 0

# Create a grid object from the numpy array
grid = Grid(matrix=matrix)

# Mark the start and end points
start = grid.node(0, 0, 0)
end = grid.node(9, 9, 9)

# Create an instance of the A* finder with diagonal movement allowed
finder = AStarFinder(diagonal_movement=DiagonalMovement.always)
path, runs = finder.find_path(start, end, grid)

# Path will be a list with all the waypoints as nodes
# Convert it to a list of coordinate tuples
path = [p.identifier for p in path]

print("operations:", runs, "path length:", len(path))
print("path:", path)

For usage examples with detailed descriptions take a look at the examples folder.

Rerun the Algorithm

When rerunning the algorithm, remember to clean the grid first using Grid.cleanup. This will reset the grid to its original state.

grid.cleanup()

Please note that this operation can be time-consuming but is usally faster than creating a new grid object.

Implementation details

All pathfinding algorithms in this library inherit from the Finder class. This class provides common functionality that can be overridden by specific pathfinding algorithm implementations.

General Process:

  1. You call find_path on one of your finder implementations.
  2. init_find instantiates the open_list and resets all values and counters. The open_list is a priority queue that keeps track of nodes to be explored.
  3. The main loop starts on the open_list which contains all nodes to be processed next (e.g. all current neighbors that are walkable). You need to implement check_neighbors in your finder implementation to fill this list.
  4. For example in A* implementation (AStarFinder), check_neighbors pops the node with the minimum 'f' value from the open list and marks it as closed. It then either returns the path (if the end node is reached) or continues processing neighbors.
  5. If the end node is not reached, check_neighbors calls find_neighbors to get all adjacent walkable nodes. For most algorithms, this calls grid.neighbors.
  6. If none of the neighbors are walkable, the algorithm terminates. Otherwise, check_neighbors calls process_node on each neighbor. It calculates the cost f for each neighbor node. This involves computing g (the cost from the start node to the current node) and h (the estimated cost from the current node to the end node, calculated by apply_heuristic).
  7. Finally process_node updates the open list so find_path with new or updated nodes. This allows find_path to continue the process with the next node in the subsequent iteration.

flow:

  find_path
    init_find  # (re)set global values and open list
    while open_list not empty:
      check_neighbors  # for the node with min 'f' value in open list
        pop_node  # node with min 'f' value
        find_neighbors  # get neighbors
        process_node  # calculate new cost for each neighbor

Testing

Run the tests locally using pytest. For detailed instructions, see the test folder:

pytest test

Contributing

We welcome contributions of all sizes and levels! For bug reports and feature requests, please use the issue tracker to submit bug reports and feature requests. Please Follow the guidelines in CONTRIBUTING.md for submitting merge requests.

License

Pathfinding3D is distributed under the MIT license.

Authors / Contributers

Find a list of contributors here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pathfinding3d-0.5.1.tar.gz (23.9 kB view details)

Uploaded Source

Built Distribution

pathfinding3d-0.5.1-py3-none-any.whl (26.4 kB view details)

Uploaded Python 3

File details

Details for the file pathfinding3d-0.5.1.tar.gz.

File metadata

  • Download URL: pathfinding3d-0.5.1.tar.gz
  • Upload date:
  • Size: 23.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.18

File hashes

Hashes for pathfinding3d-0.5.1.tar.gz
Algorithm Hash digest
SHA256 23421fdb50a8db353acddf09c5f1ef2af413caaece2d20335c6d8b9f05b9aefc
MD5 b76b975fc04f2e6b708bb166a3d7cbda
BLAKE2b-256 3c72d4789fa17292807144e702ce9623285bc37a8682fbc6b36fca24fe5db38e

See more details on using hashes here.

File details

Details for the file pathfinding3d-0.5.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pathfinding3d-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e976b68f670ef3335d3fc9c2daecac571863e77eaa68cf6f984a2986ada1710b
MD5 38a6065b90273c81aaddf0da4f64f784
BLAKE2b-256 feffc29b521ba01f80fd862919bf5abfff1c4d32b02aa07ad0f55ce4c124de79

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page