Skip to main content

No project description provided

Project description

Patronus Python SDK

The Patronus Python SDK is a Python library for systematic evaluation of Large Language Models (LLMs). Build, test, and improve your LLM applications with customizable tasks, evaluators, and comprehensive experiment tracking.

Note: This library is currently in beta and is not stable. The APIs may change in future releases.

Documentation

For detailed documentation, including API references and advanced usage, please visit our documentation.

Installation

pip install patronus

Quickstart

Evaluation

For quick testing and exploration, you can use the synchronous evaluate() method:

import os
from patronus import Client

client = Client(
    # This is the default and can be omitted
    api_key=os.environ.get("PATRONUS_API_KEY"),
)
result = client.evaluate(
    evaluator="lynx",
    criteria="patronus:hallucination",
    evaluated_model_input="Who are you?",
    evaluated_model_output="My name is Barry.",
    evaluated_model_retrieved_context="My name is John.",
)
print(f"Pass: {result.pass_}")
print(f"Explanation: {result.explanation}")

The Patronus Python SDK is designed to work primarily with async/await patterns, which is the recommended way to use the library. Here's a feature-rich example using async evaluation:

import asyncio
from patronus import Client

client = Client()

no_apologies = client.remote_evaluator(
    "judge",
    "patronus:no-apologies",
    explain_strategy="always",
    max_attempts=3,
)


async def evaluate():
    result = await no_apologies.evaluate(
        evaluated_model_input="How to kill a docker container?",
        evaluated_model_output="""
        I cannot assist with that question as it has been marked as inappropriate.
        I must respectfully decline to provide an answer."
        """,
    )
    print(f"Pass: {result.pass_}")
    print(f"Explanation: {result.explanation}")


asyncio.run(evaluate())

Experiment

The Patronus Python SDK includes a powerful experimentation framework designed to help you evaluate, compare, and improve your AI models. Whether you're working with pre-trained models, fine-tuning your own, or experimenting with new architectures, this framework provides the tools you need to set up, execute, and analyze experiments efficiently.

import os
from patronus import Client, Row, TaskResult, evaluator, task

client = Client(
    # This is the default and can be omitted
    api_key=os.environ.get("PATRONUS_API_KEY"),
)


@task
def my_task(row: Row):
    return f"{row.evaluated_model_input} World"


@evaluator
def exact_match(row: Row, task_result: TaskResult):
    # exact_match is locally defined and run evaluator
    return task_result.evaluated_model_output == row.evaluated_model_gold_answer


# Reference remote Judge Patronus Evaluator with is-concise criteria.
# This evaluator runs remotely on Patronus infrastructure.
is_concise = client.remote_evaluator("judge", "patronus:is-concise")

client.experiment(
    "Tutorial Project",
    dataset=[
        {
            "evaluated_model_input": "Hello",
            "evaluated_model_gold_answer": "Hello World",
        },
    ],
    task=my_task,
    evaluators=[exact_match, is_concise],
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

patronus-0.0.13rc0.tar.gz (24.7 kB view details)

Uploaded Source

Built Distribution

patronus-0.0.13rc0-py3-none-any.whl (28.8 kB view details)

Uploaded Python 3

File details

Details for the file patronus-0.0.13rc0.tar.gz.

File metadata

  • Download URL: patronus-0.0.13rc0.tar.gz
  • Upload date:
  • Size: 24.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.5 Darwin/23.4.0

File hashes

Hashes for patronus-0.0.13rc0.tar.gz
Algorithm Hash digest
SHA256 0dd12fa0ffe9023f4e3aa9a05243f8d7eb07db69c44057cd642032d510e1623b
MD5 cb977c349d4ed04c10e3da405bcd5a70
BLAKE2b-256 249c4269aef125d17a06354232e3c036c50b73c7225c5606c28185b515117935

See more details on using hashes here.

File details

Details for the file patronus-0.0.13rc0-py3-none-any.whl.

File metadata

  • Download URL: patronus-0.0.13rc0-py3-none-any.whl
  • Upload date:
  • Size: 28.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.5 Darwin/23.4.0

File hashes

Hashes for patronus-0.0.13rc0-py3-none-any.whl
Algorithm Hash digest
SHA256 6eeef80e4e4a129abe928c111322513951d42b5914068b7008ba9c6ff2c3da0d
MD5 47f6e6bfc0d6021ef3279b6e4f557203
BLAKE2b-256 3fc765560930e62de7e368f18139f7790bf99703f56e93a962d16d512e1ea9a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page