Skip to main content

Web mining module for Python.

Project description

Pattern
=======

.. image:: https://travis-ci.org/pattern3/pattern.svg?branch=master
:target: https://travis-ci.org/pattern3/pattern

Pattern is a web mining module for Python. It has tools for:

- Data Mining: web services (Google, Twitter, Wikipedia), web crawler,
HTML DOM parser
- Natural Language Processing: part-of-speech taggers, n-gram search,
sentiment analysis, WordNet
- Machine Learning: vector space model, clustering, classification
(KNN, SVM, Perceptron)
- Network Analysis: graph centrality and visualization.

It is well documented and bundled with 50+ examples and 350+ unit tests.
The source code is licensed under BSD and available from
http://www.clips.ua.ac.be/pages/pattern.

.. figure:: http://www.clips.ua.ac.be/media/pattern_schema.gif
:alt: Pattern example workflow

Pattern example workflow
Version
-------

2.6

License
-------

**BSD**, see ``LICENSE.txt`` for further details.

Installation
------------

Pattern is written for Python 2.5+ (no support for Python 3 yet). The
module has no external dependencies except when using LSA in the
pattern.vector module, which requires NumPy (installed by default on Mac
OS X). To install Pattern so that it is available in all your scripts,
unzip the download and from the command line do:

.. code:: bash

cd pattern-2.6
python setup.py install

If you have pip, you can automatically download and install from the
PyPi repository:

.. code:: bash

pip install pattern

If none of the above works, you can make Python aware of the module in
three ways: - Put the pattern folder in the same folder as your script.
- Put the pattern folder in the standard location for modules so it is
available to all scripts: \* ``c:\python26\Lib\site-packages\``
(Windows), \* ``/Library/Python/2.6/site-packages/`` (Mac OS X), \*
``/usr/lib/python2.6/site-packages/`` (Unix). - Add the location of the
module to ``sys.path`` in your script, before importing it:

.. code:: python

MODULE = '/users/tom/desktop/pattern'
import sys; if MODULE not in sys.path: sys.path.append(MODULE)
from pattern.en import parsetree

Example
-------

This example trains a classifier on adjectives mined from Twitter.
First, tweets that contain hashtag #win or #fail are collected. For
example: "$20 tip off a sweet little old lady today #win". The word
part-of-speech tags are then parsed, keeping only adjectives. Each tweet
is transformed to a vector, a dictionary of adjective → count items,
labeled ``WIN`` or ``FAIL``. The classifier uses the vectors to learn
which other tweets look more like ``WIN`` or more like ``FAIL``.

.. code:: python

from pattern.web import Twitter
from pattern.en import tag
from pattern.vector import KNN, count

twitter, knn = Twitter(), KNN()

for i in range(1, 3):
for tweet in twitter.search('#win OR #fail', start=i, count=100):
s = tweet.text.lower()
p = '#win' in s and 'WIN' or 'FAIL'
v = tag(s)
v = [word for word, pos in v if pos == 'JJ'] # JJ = adjective
v = count(v) # {'sweet': 1}
if v:
knn.train(v, type=p)

print knn.classify('sweet potato burger')
print knn.classify('stupid autocorrect')

Documentation
-------------

http://www.clips.ua.ac.be/pages/pattern

Reference
---------

De Smedt, T., Daelemans, W. (2012). Pattern for Python. *Journal of
Machine Learning Research, 13*, 2031–2035.

Contribute
----------

The source code is hosted on GitHub and contributions or donations are
welcomed, see the `developer
documentation <http://www.clips.ua.ac.be/pages/pattern#contribute>`__.
If you use Pattern in your work, please cite our reference paper.

Bundled dependencies
--------------------

Pattern is bundled with the following data sets, algorithms and Python
packages:

- **Beautiful Soup**, Leonard Richardson
- **Brill tagger**, Eric Brill
- **Brill tagger for Dutch**, Jeroen Geertzen
- **Brill tagger for German**, Gerold Schneider & Martin Volk
- **Brill tagger for Spanish**, trained on Wikicorpus (Samuel Reese &
Gemma Boleda et al.)
- **Brill tagger for French**, trained on Lefff (Benoît Sagot & Lionel
Clément et al.)
- **Brill tagger for Italian**, mined from Wiktionary
- **English pluralization**, Damian Conway
- **Spanish verb inflection**, Fred Jehle
- **French verb inflection**, Bob Salita
- **Graph JavaScript framework**, Aslak Hellesoy & Dave Hoover
- **LIBSVM**, Chih-Chung Chang & Chih-Jen Lin
- **LIBLINEAR**, Rong-En Fan et al.
- **NetworkX centrality**, Aric Hagberg, Dan Schult & Pieter Swart
- **PDFMiner**, Yusuke Shinyama
- **Python docx**, Mike Maccana
- **PyWordNet**, Oliver Steele
- **simplejson**, Bob Ippolito
- **spelling corrector**, Peter Norvig
- **Universal Feed Parser**, Mark Pilgrim
- **WordNet**, Christiane Fellbaum et al.

Acknowledgements
----------------

**Authors:**

- Tom De Smedt (tom@organisms.be)
- Walter Daelemans (walter.daelemans@ua.ac.be)

**Contributors (chronological):**

- Frederik De Bleser
- Jason Wiener
- Daniel Friesen
- Jeroen Geertzen
- Thomas Crombez
- Ken Williams
- Peteris Erins
- Rajesh Nair
- F. De Smedt
- Radim Řehůřek
- Tom Loredo
- John DeBovis
- Thomas Sileo
- Gerold Schneider
- Martin Volk
- Samuel Joseph
- Shubhanshu Mishra
- Robert Elwell
- Fred Jehle
- Antoine Mazières + fabelier.org
- Rémi de Zoeten + closealert.nl
- Kenneth Koch
- Jens Grivolla
- Fabio Marfia
- Steven Loria
- Colin Molter + tevizz.com
- Peter Bull
- Maurizio Sambati
- Dan Fu
- Salvatore Di Dio
- Vincent Van Asch
- Frederik Elwert

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pattern3-3.0.0.tar.gz (23.7 MB view details)

Uploaded Source

File details

Details for the file pattern3-3.0.0.tar.gz.

File metadata

  • Download URL: pattern3-3.0.0.tar.gz
  • Upload date:
  • Size: 23.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pattern3-3.0.0.tar.gz
Algorithm Hash digest
SHA256 d9de94d7347853af279c67b0c15c452893614cfb2ac5e641a2dcfb84e926a5f5
MD5 ab52c2b08b90db5a1171780ca1ada3a8
BLAKE2b-256 2b0cdef740f1aaa8c7e3a8c57779187837478f0942eb00b33d4f96246ee63143

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page