A tool for detecting anomalies in time series data
Project description
- Info:
Paper draft link will be posted here
- Author:
Drew Vlasnik, Ishanu Chattopadhyay
- Laboratory:
The Laboratory for Zero Knowledge Discovery, The University of Chicago https://zed.uchicago.edu
- Description:
Discovery of emergent anomalies in data streams without explicit prior models of correct or aberrant behavior, based on the modeling of ergodic, quasi-stationary finite valued processes as probabilistic finite state automata (PFSA).
- Documentation:
Installation:
pip install patternly --user -U
Usage:
See examples.
from patternly.detection import AnomalyDetection, StreamingDetection
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
patternly-0.0.29.tar.gz
(9.6 kB
view details)
Built Distribution
File details
Details for the file patternly-0.0.29.tar.gz
.
File metadata
- Download URL: patternly-0.0.29.tar.gz
- Upload date:
- Size: 9.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 69c668317c8891f403c8ea614724da879b027ee6356fdaccdf8d74921964cf87 |
|
MD5 | 82bf979599a9230d0a571fb8339c6bd7 |
|
BLAKE2b-256 | 3e1ef50079470da18be67adc07df43197f0665fc931052009d0a41882e6c1a6f |
File details
Details for the file patternly-0.0.29-py3-none-any.whl
.
File metadata
- Download URL: patternly-0.0.29-py3-none-any.whl
- Upload date:
- Size: 9.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3bc9c22c88c1b973a0108ffdcce2eb458b1fbd131fe0fcc21f6e7d89e13a2347 |
|
MD5 | 8bf3d5712a94c46e17c880eb24a83a4d |
|
BLAKE2b-256 | eb6d9c850804c0ac6017fa564b05e44a1502918f052d11a8680afd1bde3faa65 |