Skip to main content

A tool for detecting anomalies in time series data

Project description

mantis logo
Info:

Paper draft link will be posted here

Author:

ZeD@UChicago <zed.uchicago.edu>

Description:

Discovery of emergent anomalies in data streams without explicit prior models of correct or aberrant behavior, based on the modeling of ergodic, quasi-stationary finite valued processes as probabilistic finite state automata (PFSA).

Documentation:

https://zeroknowledgediscovery.github.io/patternly/patternly/detection.html

Installation:

Usage:

See examples.

from patternly.detection import AnomalyDetection

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

patternly-0.0.6.tar.gz (6.3 kB view details)

Uploaded Source

Built Distribution

patternly-0.0.6-py3-none-any.whl (11.2 kB view details)

Uploaded Python 3

File details

Details for the file patternly-0.0.6.tar.gz.

File metadata

  • Download URL: patternly-0.0.6.tar.gz
  • Upload date:
  • Size: 6.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for patternly-0.0.6.tar.gz
Algorithm Hash digest
SHA256 8c2dcf0c2c70a6daab5faf004d2f4c7ee12daa4bfb8771530ce435b825c3300b
MD5 3aaa5df0597df9435cd92a3afa67395d
BLAKE2b-256 92ab29f6beb7577c0da157bb6887b5245944896c1c77cbf52de7dcb0ee6c403c

See more details on using hashes here.

File details

Details for the file patternly-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: patternly-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 11.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for patternly-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 e887774f3aeb356d5c98ed12c7c9ea384ba4b243ac0333c2ee517a1435a60db0
MD5 c9997b3d9a33218b042cc48650d638ce
BLAKE2b-256 262cf8985efaf94e00689801b292ff26e3bd39e0fd7bb9bebbac846a37b1d644

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page