Simplified deserialization using dataclasses
Project description
pavlova is a library that assists in mapping an unknown input into a dataclass.
from datetime import datetime
from dataclasses import dataclass
from pavlova import Pavlova
@dataclass
class Input:
id: int
name: str
date: datetime
Pavlova().from_mapping({
'id': 10,
'name': 100
'date': '2018-08-10',
}, Input)
# Input(id=10, name='100', date=datetime.datetime(2018, 8, 10, 0, 0))
Pavlova was born out of frustration with the lack of typing support for existing deserialization libraries. With the introduction of dataclasses in Python 3.7, they seemed like the perfect use for defining a deserialization schema.
Supported functionality
Parsing of booleans, datetimes, floats, ints, strings, decimals, dictionaries, enums, lists are currently supported.
There are more parsers to come, however to implement your own custom parser, simply implement PavlovaParser in pavlova.parsers, and register it with the Pavlova object with the register_parser method.
Installation
pip install pavlova
Usage with Flask
from dataclasses import dataclass, asdict
from flask import Flask, jsonify
from pavlova.flask import FlaskPavlova
pavlova = FlaskPavlova()
app = Flask(__name__)
@dataclass
class SampleInput:
id: int
name: str
@app.route('/post', methods=['POST'])
@pavlova.use(SampleInput)
def data(data: SampleInput):
data.id = data.id * len(data.name)
return jsonify(asdict(data))
app.run()
Adding Custom Types
There are a couple of different ways to implement new types for parsing in pavlova. In general, the process is to add a parser a specific type. For validation you should raise a TypeError or ValueError.
The first one, is creating a new type that extends an existing base type. Here is an example on how to implement an Email type, which is a string but performs validation.
from pavlova import Pavlova
from pavlova.parsers import GenericParser
class Email(str):
def __new__(cls, input_value: typing.Any) -> str:
if isinstance(input_value, str):
if '@' in input_value:
return str(input_value)
raise ValueError()
raise TypeError()
pavlova = Pavlova()
pavlova.register_parser(Email, GenericParser(pavlova, Email))
Another way, is to implement your own pavlova parser, rather than using your the built in GenericParser parser.
import datetime
from typing import Any, Tuple
import dateparser
from pavlova import Pavlova
from pavlova.parsers import PavlovaParser
class DatetimeParser(PavlovaParser[datetime.datetime]):
"Parses a datetime"
def parse_input(self,
input_value: Any,
field_type: Type,
path: Tuple[str, ...]) -> datetime.datetime:
return dateparser.parse(input_value)
pavlova = Pavlova()
pavlova.register_parser(datetime.DateTime, DatetimeParser(pavlova))
Requirements
Pavlova is only supported on Python 3.6 and higher. With Python 3.6, it will install the dataclasses module. With Python 3.7 and higher, it will use the built-in dataclasses module.
License
GNU LGPLv3. Please see LICENSE and COPYING.LESSER.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pavlova-0.1.2.tar.gz
.
File metadata
- Download URL: pavlova-0.1.2.tar.gz
- Upload date:
- Size: 6.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 90f0ff259203f8bb7e0530cfbf5bc5fe9b05ed7a227b3e8c02746b35a67fdd6a |
|
MD5 | d41e527158d7bf91dff549b81d7c8c57 |
|
BLAKE2b-256 | 09ca4a00605c73e8288de67256fa7910b4f9ea12cabdf882d4bf8a0a4d7a5428 |
File details
Details for the file pavlova-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: pavlova-0.1.2-py3-none-any.whl
- Upload date:
- Size: 7.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8e3989fa34037a46da0279dff0f3d90edf313b04eb45e3992c44e788d32e4baa |
|
MD5 | bf9d73e046d5f75f37ab717acad27015 |
|
BLAKE2b-256 | 74549dbaf8d273001620d8d95bb2aa718e0454e7c8b4a8fd55dadc1f0abd5807 |