Skip to main content

Basic Utility module for the Python programming language

Project description

Python Basic Utilities pbu

Available on PyPi

Table of Contents

  1. Installation
  2. Usage
  3. Classes
    1. JSON - a JavaScript-like dictionary access helper
    2. Logger - a wrapper around the Python logging framework
    3. TimeSeries - powerful helper class to organise time series
    4. AbstractMongoStore - helper and wrapper class for MongoDB access
    5. AbstractMysqlStore - helper and wrapper class for MySQL access
    6. BasicMonitor - monitor class orchestrating regular operations
    7. ConstantListing - a parent class allowing to fetch attribute values from a constant class
    8. PerformanceLogger - a utility class to log runtime performance of processes
  4. Functions
    1. list_to_json
    2. default_options
    3. default_value
    4. Datetime Functions
    5. weighted_mean
    6. normalise


Install via pip:

pip install pbu


Optional: If you have a requirement.txt file, you can add pbu:


Then, simply import the class / module you need:

from pbu import JSON

# and start using it
obj = JSON({"my": {"obj": "content"}})



This is an adaptation of the native dict class, providing Javascript-like dictionary access using the "dot-notation" (e.g. person.relations[0].address.street) rather than the Python-native bracket notation (e.g. person["relations"][0]["address"]["street"]). It overrides the basic __getattr__ and __setattr__ methods as a shortcut to manage the dictionary content.


from pbu import JSON

my_obj = JSON({"initial": "content"})
# prints out "content"

my_obj.initial = {"a": 5, "b": 3}
print(my_obj.initial.a + my_obj.initial.b)
# prints out 8
my_obj.initial.b = 13
print(my_obj.initial.a + my_obj.initial.b)
# prints out 18

my_obj.extension = 10
# prints out 10


This is a basic logger allowing to write log files, for it writes a debug.log and for logger.error or logger.exception it writes an error.log file.


from pbu import Logger

logger = Logger(name="logger-name")
logger.debug("Some debug message goes here")
logger.error("Error executing something")

logger = Logger(name="logger-name", log_folder="./logs")
logger.debug("This will create the debug.log and error.log in the ./logs folder")


The time series class is a helper utility, that allows to compile complex time-series, offering functionality to add time series, remove time series and most importantly align time series with timestamps to a previously defined resolution by interpolating missing values and re-aligning measurements within the tolerance of the provided time series.

It supports 2 different structures:

List of Dictionary Items

from datetime import datetime, timedelta

list_of_dict = [
    {"date_time":, "measurement_1": 12, "measurement_2": 15},
    {"date_time": + timedelta(hours=1), "measurement_1": 10, "measurement_2": 16},
    {"date_time": + timedelta(hours=2), "measurement_1": 9, "measurement_2": 12},

Dictionary of Lists

from datetime import datetime, timedelta

dict_of_list = {
    "date_time": [, + timedelta(hours=1), datetime + timedelta(hours=2)],
    "measurement_1": [12, 10, 16],
    "measurement_2": [15, 16, 12],


from pbu import TimeSeries
from datetime import datetime, timedelta

# initial time series base data (you can add measurements as well or provide as list of dictionaries
dict_of_list = {
    "date_time": TimeSeries.create_date_range(, + timedelta(days=1), timedelta(hours=3)),

# init time series
ts = TimeSeries(input_data=dict_of_list, date_time_key="date_time")
# add values (ensure same length as date_time series)
ts.add_values("measurement_1", [12, 10, 16, 10, 5, 8, 12, 9])

# you can translate into a list of dictionary items (keys are maintained)
list_of_dict = ts.translate_to_list_of_dicts()

# extract data series from the time series
measurement_1 = ts.get_values("measurement_1")

# create new series that provides same value for all timestamps
ts.fill_values("constant_series", 5)

# remove a series from the total data structure

# re-sample data to 5 minute resolution, interpolating values, also pre-pending another day in front of the time series 
ts.align_to_resolution(resolution=timedelta(minutes=5), - timedelta(days=1))
# this will result in "interpolated" values for the first day, using the first value (12) to fill missing values
print(len(ts.translate_to_list_of_dicts()))  # 12 an hour, 2 days, 48 * 12 = ~576 items

# the same can also be achieved by:
# no need to provide resolution now
ts.align_to_resolution( - timedelta(days=1))


Database store with helper functions for accessing MongoDB. Each store instance represents a single collection. This comes with an AbstractMongoDocument class, which can be used to model the document types you store within a MongoDB collection.


from pbu import AbstractMongoStore, AbstractMongoDocument

# this is the object type stored in the mongo store
class MyObjectType(AbstractMongoDocument):
    def __init__(self, val1, val2):
        # optional: provide id and data model version 
        self.attribute = val1
        self.attribute2 = val2,

    def to_json(self):
        # init with version and id
        result = super().to_json()
        # add attributes to dictionary and return
        result["attribute"] = self.attribute
        result["attribute2"] = self.attribute2
        return result

    def from_json(json):
        result = MyObjectType(json["attribute1"], json["attribute2"])
        # get _id and version attributes
        return result

class MyObjectStore(AbstractMongoStore):
    def __init__(self, mongo_url, db_name, collection_name, data_model_version):
        # provide object type class as de-serialisation class (providing from_json and to_json)
        super.__init__(mongo_url, db_name, collection_name, MyObjectType, data_model_version)

# create instance of store
store = MyObjectStore("mongodb://localhost:27017", "mydb", "colName", 5)

# create document using a dictionary
    "version": 5,
    "attribute1": "a",
    "attribute2": 16,

# or use the type
doc = MyObjectType("a", 16)
doc.version = 5
doc_id = store.create(doc)

# update single document using helper functions
             AbstractMongoStore.set_update(["attribute1", "attribute2"], ["b", 12]))

# returns a list of MyObjectType objects matching the version
list_of_results = store.query({"version": 5})

Attribute Mapping

As of version 0.7.0 a new feature provides an easier way to map between class attributes and JSON attributes. For primitive field mappings, we can use the built-in methods to_json() and extract_system_fields(json) to serialise and de-serialise the attributes / keys provided by the get_attribute_mapping() method. The to_json() method no longer has to be provided.

This feature is backward-compatible. If the get_attribute_mapping() method is not available, the old mechanism using to_json() and from_json() still works as before.

from pbu import AbstractMongoDocument

class MyObjectType(AbstractMongoDocument):
    def __init__(self):
        self.attribute_name_1 = None
        self.attribute_2 = None

    def get_attribute_mapping(self):
        # provide a mapping from the class attribute to the JSON key
        return {
            "attribute_name_1": "attributeName1",
            "attribute_2": "attribute2",

    def from_json(json):
        obj = MyObjectType()
        return obj

Sorting and Pagination

As of version 0.7.1 a new feature was added to the query() method to support sorting and pagination.

The signature of query(query) was extended to query(query, sorting=None, paging=None), so it is backward compatible.

  • The sorting can be provided as single string or as dictionary.
  • The paging can be provided as PagingInformation object.


  • store.query(query, sorting="date") will sort by the key "date" in ascending order
  • store.query(query, sorting={"date": "desc"}) will sort by the key "date" in descending order
  • store.query(query, sorting={"date": 1}) will sort by the key "date" in ascending order
  • store.query(query, sorting={"date": 1, "time": "DESCENDING"}) will first sort by the key "date" in ascending order and then by the key "time" in descending order
  • Any string starting with "asc" or "desc" (case-insensitive) is supported. You can also provide an integer, where 1 is ascending and -1 is descending.


from pbu import PagingInformation

search_query = {"customer": "Max"}
# store is an instance of a sub-class of AbstractMongoStore
result = store.query(search_query, paging=PagingInformation(page=5, page_size=50))

The first page is page 0, the default page_size is 25.


An abstract class providing base-functionality for running monitors - threads that run a specific routine in a regular interval. This can be an executor waiting for new tasks to be processed (and checking every 5 seconds) or a thread that monitors some readout in a regular interval. The monitor is wrapped to re-start itself, in case of errors.


from pbu import BasicMonitor

class MyOwnMonitor(BasicMonitor):
    def __init__(self, data):
        super().__init__(monitor_id="my_id", wait_time=5)  # waits 5 seconds between each execution loop = data

    def running(self):
            # your code goes here (example):
            # result = fetch_data(
            # store_result(result)

If you want to run in a regular interval, the running method needs to be slightly modified:

from time import time
from pbu import BasicMonitor

class MyRegularOwnMonitor(BasicMonitor):
    def __init__(self, data):
        super().__init__(monitor_id="another_id", wait_time=60, run_interval=True)  # execute every 60 seconds = data

    def running(self):
            start_ts = time()  # capture start of loop
            # your code goes here (example):
            # result = do_something(
            # store_result(result)
            self.wait(exec_duration=round(time() - start_ts))  # include the execution duration

Optional constructor parameters

  • You can also pass a custom logger as custom_logger argument to the constructor. By default it will use the pbu.Logger and log major events such as start/stop/restart and errors.
  • Passing a ping_interval parameter allows you to check for overdue jobs more often than the wait time. For example you could have a wait_time of 1800s (30 min) and a ping_interval of 60s, which allows you to not miss out on an execution if your machine running the monitor should sleep (e.g. on a laptop when you put it on standby, the sleep timer stops). By default this is 60 seconds (or the wait_time, if the wait_time is lower than 60s)

Manage and run monitor

import threading

def start_monitor_thread(monitor):
    Thread function to be run by the new thread.
    :param monitor: BasicMonitor - an instance of sub-class of BasicMonitor 
    # start the monitor

# create monitor instance of your own class that implements BasicMonitor
regular_monitor = MyRegularOwnMonitor(data={"some": "data"})

# create thread with start-up function and start it
t = threading.Thread(target=start_monitor_thread, args=(regular_monitor,), daemon=True)

# in a separate piece of code (e.g. REST handler or timer) you can stop the monitor instance

Stopping a monitor doesn't interrupt the current thread. If the monitor is for example in a wait period and you send the stop signal, the thread will still run until the wait period passes.

In an API scenario, I recommend using a dict or list to cache monitors and retrieve them via the API using the to_json() method for identification. This then allows you to signal starting / stopping of monitors by providing the monitor ID and lookup the monitor instance in the monitor cache.

BasicMonitor Methods

  • start() - starts the monitor
  • stop() - stops the monitor
  • to_json() - returns a dictionary with basic monitor technical information (id, state, wait behaviour, etc)
  • wait_till_midnight() - waits till the next midnight in your machines time zone
  • wait(exec_duration=0) - waits for the time specified in the constructor and in case of run_interval=True for the optional exec_duration, if provided.


Managing constants is good practice for avoiding typos. Imagine the following class:

class Tags:
    GEO = "GEO"

This allows you to just do: Tags.GEO allowing you to use your IDEs auto-complete, avoiding typos. But if you want to programmatically get all possible values for Tags, you can use pbu's ConstantListing class:

from pbu import ConstantListing

class Tags(ConstantListing):
    GEO = "GEO"

list_of_values = Tags().get_all()  # will return ['GEO', 'EQUIPMENT']


This utility class allows to print out or log runtime performance expressed as time delta between a start time and an end time.

Basic usage:

from pbu import PerformanceLogger

perf = PerformanceLogger()
perf.start()  # this is optional and will reset the start-time
# do something useful...
perf.checkpoint(message="Step 1")  # will print "Step 1 took <timedelta>
# some some more useful stuff...
perf.finish(message="Something useful")  # will print out the whole duration from start to finish

You can omit the message of a checkpoint call if you don't need an output for an operation, but want to print out the duration of the step that follows.

You can also use a Python Logger object (or pbu.Logger) instead of the message being printed out onto the console.

from pbu import Logger, PerformanceLogger

logger = Logger("my-logger-name")
perf = PerformanceLogger()
# do something...
perf.checkpoint()  # next output will print the duration between this point and the next checkpoint call
# do some more stuff...
perf.checkpoint(message="Some More Stuff", logger=logger)
# and even more ...
perf.finish(message="Total operation", logger=logger)


  • start() - will reset the start time of the performance logger
  • checkpoint(message=None, logger=None) - creates a new checkpoint and optionally logs a message
  • finish(message=None, logger=None) - prints out the total runtime since start() was called or the class was initialised



from pbu import list_to_json

# assuming we have `my_store` as an instance of MongoDB store or MySQL store, you can:
list_of_dictionaries = list_to_json(item_list=my_store.get_all())  # output is a list of dictionaries

This function operates on lists of objects inheriting from AbstractMongoDocument or AbstractMysqlDocument and converts them into dictionaries using the to_json() method of any object passed into the function. Objects passed into the function require the to_json() method and need to return the dictionary representation of the object. This function is just a mapping shortcut.


from pbu import default_options

    "a": 1,
    "b": 2,
    "c": 3,

result = default_options(default=DEFAULTS, override={"b": 4, "d": 5})
# result is: {"a": 1, "b": 4, "c": 3, "d": 5}

If you want to avoid additional keys other than the keys in DEFAULTS, you can provide a third argument:

from pbu import default_options

    "a": 1,
    "b": 2,

result = default_options(default=DEFAULTS, override={"b": 4, "d": 5}, allow_unknown_keys=False)
# result is: {"a": 1, "b": 4}


from pbu import default_value

result = default_value(value=None, fallback=5)  # None is by default disallowed
# result is 5

result = default_value(value=0, fallback=5, disallowed=[None, 0])  # either 0 or None would return the fallback
# result is 5

result = default_value(0, 5)  # value will be used, as it doesn't match None
# result is 0

Datetime Functions

PBU provides some utilities to help deal with timezones and datetime objects. All timezone specifications can be made either as a string (i.e. the name of the timezone, like "Australia/Melbourne") or as pytz.timezone object.

combine_date_time(date, time, tz)

Combines the provided date and time values.

from datetime import date, time
from pbu import combine_date_time

result = combine_date_time(date(year=2021, month=12, day=25), time(hour=15, minute=12, second=6), "Australia/Perth")

to_timezone(local_datetime, target_tz)

Translates a datetime to the provided target timezone.

from datetime import datetime
from pytz import utc
from pbu import to_timezone

utc_dt = datetime(year=2021, month=12, day=25, hour=3, minute=0, tzinfo=utc)  # 3:00am @ 2021-12-25
perth_dt = to_timezone(utc_dt, "Australia/Perth")
# > Result: 11:00am @ 2021-12-25 (+0800)


Shorthand for to_timezone(dt, pytz.utc)

set_timezone(datetime, target_timezone)

Simply replaces the timezone information without changing any of the time values of the datetime.

from datetime import datetime
from pytz import utc, timezone
from pbu import set_timezone

utc_dt = datetime(year=2021, month=12, day=25, hour=3, minute=0, tzinfo=utc)  # 3:00am @ 2021-12-25
perth_dt = set_timezone(utc_dt, timezone("Australia/Perth"))
# > Result: 3:00am @ 2021-12-25 (+0800)


Provides the mean (average) of a list of values, where the values are weighted by the provided weights (in the same order as the value are provided). For missing weights, the default weight is 1

from pbu import weighted_mean

weights = [5, 3, 1]
values = [10, 5, 5, 4, 3]

# ((10 * 5) + (3 * 5) + (1 * 5) + 4 + 3) / (5 + 3 + 1) = 7.0
wm = weighted_mean(values, weights)  # 7.0


Normalises a numeric value between a lower and an upper boundary. The result is a value between 0.0 and 1.0. If the provided value exceeds any of the boundaries, the boundary value will automatically be chosen (defaults to 1.0 or 0.0).

It is possible to provide a smaller upper bound than lower bound, which will invert the function and provide the negated value. As an example, if we normalise 4 between 0 and 10, we get 0.4. If we invert the boundaries to normalise 4 between 10 and 0, we get 0.6 (1.0 - 0.4).

Any invalid input (None) will result in 0.0 being returned.

from pbu import normalise

# the "standard" case
norm1 = normalise(value=4, min_val=0, max_val=10)  # 0.4
# inverted normalisation
norm2 = normalise(value=4, min_val=10, max_val=0)  # 0.6
# exceeding the boundaries
norm3 = normalise(value=11, min_val=5, max_val=10)  # 1.0
# float works as well as integer
norm4 = normalise(value=-5.0, min_val=2.3, max_val=199.0)  # 0.0
# inverted exceeding boundaries
norm5 = normalise(value=-5, min_val=100, max_val=0.5)  # 1.0
# invalid inputs will return 0.0
norm6 = normalise(value=None, min_val=0, max_val=10)  # 0.0
norm7 = normalise(value=5, min_val=0, max_val=None)  # 0.0

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pbu-0.7.8.tar.gz (38.1 kB view hashes)

Uploaded source

Built Distribution

pbu-0.7.8-py3-none-any.whl (37.9 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page