Skip to main content
Join the official 2020 Python Developers SurveyStart the survey!

Basic Utility module for the Python programming language

Project description

Python Basic Utilities pbu

Available on PyPi

Table of Contents

  1. Installation
  2. Usage
  3. Classes
    1. JSON - a JavaScript-like dictionary access helper
    2. Logger - a wrapper around the Python logging framework
    3. TimeSeries - powerful helper class to organise time series
    4. AbstractMongoStore - helper and wrapper class for MongoDB access
    5. AbstractMysqlStore - helper and wrapper class for MySQL access
    6. BasicMonitor - monitor class orchestrating regular operations


Install via pip:

pip install pbu


If you have a requirement.txt file, you can add pbu (replace 0.4.0 with latest available version or omit entirely to get the latest):


Then, simply import the class / module you need:

from pbu import JSON

# and start using it
obj = JSON({"my": {"obj": "content"}})



This is an adaptation of the native dict class, providing Javascript-like dictionary access using the "dot-notation" (e.g. person.relations[0].address.street) rather than the Python-native bracket notation (e.g. person["relations"][0]["address"]["street"]). It overrides the basic __getattr__ and __setattr__ methods as a shortcut to manage the dictionary content.


from pbu import JSON
my_obj = JSON({"initial": "content"})
# prints out "content"

my_obj.initial = {"a": 5, "b": 3}
print(my_obj.initial.a + my_obj.initial.b)
# prints out 8
my_obj.initial.b = 13
print(my_obj.initial.a + my_obj.initial.b)
# prints out 18

my_obj.extension = 10
# prints out 10


This is a basic logger allowing to write log files, for it writes a debug.log and for logger.error or logger.exception it writes an error.log file.


from pbu import Logger

logger = Logger(name="logger-name")
logger.debug("Some debug message goes here")
logger.error("Error executing something")

logger = Logger(name="logger-name", log_folder="./logs")
logger.debug("This will create the debug.log and error.log in the ./logs folder")


The time series class is a helper utility, that allows to compile complex time-series, offering functionality to add time series, remove time series and most importantly align time series with timestamps to a previously defined resolution by interpolating missing values and re-aligning measurements within the tolerance of the provided time series.

It supports 2 different structures:

List of Dictionary Items

from datetime import datetime, timedelta

list_of_dict = [
    { "date_time":, "measurement_1": 12, "measurement_2": 15 },
    { "date_time": + timedelta(hours=1), "measurement_1": 10, "measurement_2": 16 },
    { "date_time": + timedelta(hours=2), "measurement_1": 9, "measurement_2": 12 },

Dictionary of Lists

from datetime import datetime, timedelta

dict_of_list = {
    "date_time": [, + timedelta(hours=1), datetime + timedelta(hours=2)],
    "measurement_1": [12, 10, 16],
    "measurement_2": [15, 16, 12],


from pbu import TimeSeries
from datetime import datetime, timedelta

# initial time series base data (you can add measurements as well or provide as list of dictionaries
dict_of_list = {
    "date_time": TimeSeries.create_date_range(, + timedelta(days=1), timedelta(hours=3)),

# init time series
ts = TimeSeries(input_data=dict_of_list, date_time_key="date_time")
# add values (ensure same length as date_time series)
ts.add_values("measurement_1", [12, 10, 16, 10, 5, 8, 12, 9])  

# you can translate into a list of dictionary items (keys are maintained)
list_of_dict = ts.translate_to_list_of_dicts()

# extract data series from the time series
measurement_1 = ts.get_values("measurement_1")

# create new series that provides same value for all timestamps
ts.fill_values("constant_series", 5)

# remove a series from the total data structure

# re-sample data to 5 minute resolution, interpolating values, also pre-pending another day in front of the time series 
ts.align_to_resolution(resolution=timedelta(minutes=5), - timedelta(days=1))
# this will result in "interpolated" values for the first day, using the first value (12) to fill missing values
print(len(ts.translate_to_list_of_dicts()))  # 12 an hour, 2 days, 48 * 12 = ~576 items

# the same can also be achieved by:
# no need to provide resolution now
ts.align_to_resolution( - timedelta(days=1))


Database store with helper functions for accessing MongoDB. Each store instance represents a single collection. This comes with an AbstractMongoDocument class, which can be used to model the document types you store within a MongoDB collection.


from pbu import AbstractMongoStore, AbstractMongoDocument

# this is the object type stored in the mongo store
class MyObjectType(AbstractMongoDocument):
    def __init__(self, val1, val2):
        # optional: provide id and data model version 
        self.attribute = val1
        self.attribute2 = val2,
    def to_json(self):
        # init with version and id
        result = super().to_json()
        # add attributes to dictionary and return
        result["attribute"] = self.attribute
        result["attribute2"] = self.attribute2
        return result

    def from_json(json):
        result = MyObjectType(json["attribute1"], json["attribute2"])
        # get _id and version attributes
        return result

class MyObjectStore(AbstractMongoStore):
    def __init__(self, mongo_url, db_name, collection_name, data_model_version):
        # provide object type class as de-serialisation class (providing from_json and to_json)
        super.__init__(mongo_url, db_name, collection_name, MyObjectType, data_model_version)

# create instance of store
store = MyObjectStore("mongodb://localhost:27017", "mydb", "colName", 5)

# create document using a dictionary
    "version": 5,
    "attribute1": "a",
    "attribute2": 16,

# or use the type
doc = MyObjectType("a", 16)
doc.version = 5
doc_id = store.create(doc)

# update single document using helper functions
             AbstractMongoStore.set_update(["attribute1", "attribute2"], ["b", 12]))

# returns a list of MyObjectType objects matching the version
list_of_results = store.query({ "version": 5 })


An abstract class providing base-functionality for running monitors - threads that run a specific routine in a regular interval. This can be an executor waiting for new tasks to be processed (and checking every 5 seconds) or a thread that monitors some readout in a regular interval. The monitor is wrapped to re-start itself, in case of errors.


from pbu import BasicMonitor

class MyOwnMonitor(BasicMonitor):
    def __init__(self, data):
        super().__init__(monitor_id="my_id", wait_time=5)  # waits 5 seconds between each execution loop = data

    def running(self):
            # your code goes here (example):
            # result = fetch_data(
            # store_result(result)

If you want to run in a regular interval, the running method needs to be slightly modified:

from time import time
from pbu import BasicMonitor

class MyRegularOwnMonitor(BasicMonitor):
    def __init__(self, data):
        super().__init__(monitor_id="another_id", wait_time=60, run_interval=True)  # execute every 60 seconds = data

    def running(self):
            start_ts = time()  # capture start of loop
            # your code goes here (example):
            # result = do_something(
            # store_result(result)
            self.wait(exec_duration=round(time() - start_ts))  # include the execution duration

You can also pass a custom logger as custom_logger argument to the constructor. By default it will use the pbu.Logger and log major events such as start/stop/restart and errors.

Manage and run monitor

import threading

def start_monitor_thread(monitor):
    Thread function to be run by the new thread.
    :param monitor: BasicMonitor - an instance of sub-class of BasicMonitor 
    # start the monitor

# create monitor instance of your own class that implements BasicMonitor
regular_monitor = MyRegularOwnMonitor(data={"some": "data"})

# create thread with start-up function and start it
t = threading.Thread(target=start_monitor_thread, args=(regular_monitor, ), daemon=True)

# in a separate piece of code (e.g. REST handler or timer) you can stop the monitor instance

Stopping a monitor doesn't interrupt the current thread. If the monitor is for example in a wait period and you send the stop signal, the thread will still run until the wait period passes.

In an API scenario, I recommend using a dict or list to cache monitors and retrieve them via the API using the to_json() method for identification. This then allows you to signal starting / stopping of monitors by providing the monitor ID and lookup the monitor instance in the monitor cache.

BasicMonitor Methods

  • start() - starts the monitor
  • stop() - stops the monitor
  • to_json() - returns a dictionary with basic monitor technical information (id, state, wait behaviour, etc)
  • wait_till_midnight() - waits till the next midnight in your machines time zone
  • wait(exec_duration=0) - waits for the time specified in the constructor and in case of run_interval=True for the optional exec_duration, if provided.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pbu, version 0.6.0
Filename, size File type Python version Upload date Hashes
Filename, size pbu-0.6.0-py3-none-any.whl (30.2 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size pbu-0.6.0.tar.gz (22.3 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page