Skip to main content

Basic Utility module for the Python programming language

Project description

Python Basic Utilities pbu

Available on PyPi

Table of Contents

  1. Installation
  2. Usage
  3. Classes
    1. JSON - a JavaScript-like dictionary access helper
    2. Logger - a wrapper around the Python logging framework
    3. TimeSeries - powerful helper class to organise time series
    4. AbstractMongoStore - helper and wrapper class for MongoDB access
    5. AbstractMysqlStore - helper and wrapper class for MySQL access
    6. BasicMonitor - monitor class orchestrating regular operations
    7. ConstantListing - a parent class allowing to fetch attribute values from a constant class
    8. PerformanceLogger - a utility class to log runtime performance of processes
  4. Functions
    1. list_to_json
    2. default_options
    3. default_value

Installation

Install via pip:

pip install pbu

Usage

Optional: If you have a requirement.txt file, you can add pbu:

pbu

Then, simply import the class / module you need:

from pbu import JSON

# and start using it
obj = JSON({"my": {"obj": "content"}})
print(obj.my.obj)

Classes

JSON

This is an adaptation of the native dict class, providing Javascript-like dictionary access using the "dot-notation" (e.g. person.relations[0].address.street) rather than the Python-native bracket notation (e.g. person["relations"][0]["address"]["street"]). It overrides the basic __getattr__ and __setattr__ methods as a shortcut to manage the dictionary content.

Example

from pbu import JSON
my_obj = JSON({"initial": "content"})
print(my_obj.initial)
# prints out "content"

my_obj.initial = {"a": 5, "b": 3}
print(my_obj.initial.a + my_obj.initial.b)
# prints out 8
my_obj.initial.b = 13
print(my_obj.initial.a + my_obj.initial.b)
# prints out 18

my_obj.extension = 10
print(my_obj.extension)
# prints out 10

Logger

This is a basic logger allowing to write log files, for logger.info it writes a debug.log and for logger.error or logger.exception it writes an error.log file.

Example

from pbu import Logger

logger = Logger(name="logger-name")
logger.debug("Some debug message goes here")
logger.error("Error executing something")

logger = Logger(name="logger-name", log_folder="./logs")
logger.debug("This will create the debug.log and error.log in the ./logs folder")

TimeSeries

The time series class is a helper utility, that allows to compile complex time-series, offering functionality to add time series, remove time series and most importantly align time series with timestamps to a previously defined resolution by interpolating missing values and re-aligning measurements within the tolerance of the provided time series.

It supports 2 different structures:

List of Dictionary Items

from datetime import datetime, timedelta

list_of_dict = [
    { "date_time": datetime.now(), "measurement_1": 12, "measurement_2": 15 },
    { "date_time": datetime.now() + timedelta(hours=1), "measurement_1": 10, "measurement_2": 16 },
    { "date_time": datetime.now() + timedelta(hours=2), "measurement_1": 9, "measurement_2": 12 },
]

Dictionary of Lists

from datetime import datetime, timedelta

dict_of_list = {
    "date_time": [datetime.now(), datetime.now() + timedelta(hours=1), datetime + timedelta(hours=2)],
    "measurement_1": [12, 10, 16],
    "measurement_2": [15, 16, 12],
}

Example

from pbu import TimeSeries
from datetime import datetime, timedelta

# initial time series base data (you can add measurements as well or provide as list of dictionaries
dict_of_list = {
    "date_time": TimeSeries.create_date_range(datetime.now(), datetime.now() + timedelta(days=1), timedelta(hours=3)),
}

# init time series
ts = TimeSeries(input_data=dict_of_list, date_time_key="date_time")
# add values (ensure same length as date_time series)
ts.add_values("measurement_1", [12, 10, 16, 10, 5, 8, 12, 9])  

# you can translate into a list of dictionary items (keys are maintained)
list_of_dict = ts.translate_to_list_of_dicts()

# extract data series from the time series
measurement_1 = ts.get_values("measurement_1")

# create new series that provides same value for all timestamps
ts.fill_values("constant_series", 5)

# remove a series from the total data structure
ts.remove_series("constant_series")

# re-sample data to 5 minute resolution, interpolating values, also pre-pending another day in front of the time series 
ts.align_to_resolution(resolution=timedelta(minutes=5), start_date=datetime.now() - timedelta(days=1))
# this will result in "interpolated" values for the first day, using the first value (12) to fill missing values
print(len(ts.translate_to_list_of_dicts()))  # 12 an hour, 2 days, 48 * 12 = ~576 items

# the same can also be achieved by:
ts.set_resolution(timedelta(minutes=5))
# no need to provide resolution now
ts.align_to_resolution(start_date=datetime.now() - timedelta(days=1))

AbstractMongoStore

Database store with helper functions for accessing MongoDB. Each store instance represents a single collection. This comes with an AbstractMongoDocument class, which can be used to model the document types you store within a MongoDB collection.

Example

from pbu import AbstractMongoStore, AbstractMongoDocument

# this is the object type stored in the mongo store
class MyObjectType(AbstractMongoDocument):
    def __init__(self, val1, val2):
        # optional: provide id and data model version 
        super().__init__()
        self.attribute = val1
        self.attribute2 = val2,
    def to_json(self):
        # init with version and id
        result = super().to_json()
        # add attributes to dictionary and return
        result["attribute"] = self.attribute
        result["attribute2"] = self.attribute2
        return result

    @staticmethod
    def from_json(json):
        result = MyObjectType(json["attribute1"], json["attribute2"])
        # get _id and version attributes
        result.extract_system_fields(json)
        return result


class MyObjectStore(AbstractMongoStore):
    def __init__(self, mongo_url, db_name, collection_name, data_model_version):
        # provide object type class as de-serialisation class (providing from_json and to_json)
        super.__init__(mongo_url, db_name, collection_name, MyObjectType, data_model_version)


# create instance of store
store = MyObjectStore("mongodb://localhost:27017", "mydb", "colName", 5)

# create document using a dictionary
store.create({
    "version": 5,
    "attribute1": "a",
    "attribute2": 16,
})

# or use the type
doc = MyObjectType("a", 16)
doc.version = 5
doc_id = store.create(doc)

# update single document using helper functions
store.update(AbstractMongoStore.id_query(doc_id), 
             AbstractMongoStore.set_update(["attribute1", "attribute2"], ["b", 12]))


# returns a list of MyObjectType objects matching the version
list_of_results = store.query({ "version": 5 })

Attribute Mapping

As of version 0.7.0 a new feature provides an easier way to map between class attributes and JSON attributes. For primitive field mappings, we can use the built-in methods to_json() and extract_system_fields(json) to serialise and de-serialise the attributes / keys provided by the get_attribute_mapping() method. The to_json() method no longer has to be provided.

This feature is backward-compatible. If the get_attribute_mapping() method is not available, the old mechanism using to_json() and from_json() still works as before.

from pbu import AbstractMongoDocument

class MyObjectType(AbstractMongoDocument):
    def __init__(self):
        super().__init__()
        self.attribute_name_1 = None
        self.attribute_2 = None

    def get_attribute_mapping(self):
        # provide a mapping from the class attribute to the JSON key
        return {
           "attribute_name_1": "attributeName1",
           "attribute_2": "attribute2",
        }

    @staticmethod
    def from_json(json):
        obj = MyObjectType()
        obj.extract_system_fields(json)
        return obj

Sorting and Pagination

As of version 0.7.1 a new feature was added to the query() method to support sorting and pagination.

The signature of query(query) was extended to query(query, sorting=None, paging=None), so it is backward compatible.

  • The sorting can be provided as single string or as dictionary.
  • The paging can be provided as PagingInformation object.

Sorting

  • store.query(query, sorting="date") will sort by the key "date" in ascending order
  • store.query(query, sorting={"date": "desc"}) will sort by the key "date" in descending order
  • store.query(query, sorting={"date": 1}) will sort by the key "date" in ascending order
  • store.query(query, sorting={"date": 1, "time": "DESCENDING"}) will first sort by the key "date" in ascending order and then by the key "time" in descending order
  • Any string starting with "asc" or "desc" (case-insensitive) is supported. You can also provide an integer, where 1 is ascending and -1 is descending.

Paging

from pbu import PagingInformation

search_query = {"customer": "Max"}
# store is an instance of a sub-class of AbstractMongoStore
result = store.query(search_query, paging=PagingInformation(page=5, page_size=50))`

The first page is page 0, the default page_size is 25.

BasicMonitor

An abstract class providing base-functionality for running monitors - threads that run a specific routine in a regular interval. This can be an executor waiting for new tasks to be processed (and checking every 5 seconds) or a thread that monitors some readout in a regular interval. The monitor is wrapped to re-start itself, in case of errors.

Example

from pbu import BasicMonitor

class MyOwnMonitor(BasicMonitor):
    def __init__(self, data):
        super().__init__(monitor_id="my_id", wait_time=5)  # waits 5 seconds between each execution loop
        self.data = data

    def running(self):
        while self.active:
            # your code goes here (example):
            # result = fetch_data(self.data)
            # store_result(result)
            self.wait()

If you want to run in a regular interval, the running method needs to be slightly modified:

from time import time
from pbu import BasicMonitor

class MyRegularOwnMonitor(BasicMonitor):
    def __init__(self, data):
        super().__init__(monitor_id="another_id", wait_time=60, run_interval=True)  # execute every 60 seconds
        self.data = data

    def running(self):
        while self.active:
            start_ts = time()  # capture start of loop
            # your code goes here (example):
            # result = do_something(self.data)
            # store_result(result)
            self.wait(exec_duration=round(time() - start_ts))  # include the execution duration

You can also pass a custom logger as custom_logger argument to the constructor. By default it will use the pbu.Logger and log major events such as start/stop/restart and errors.

Manage and run monitor

import threading

def start_monitor_thread(monitor):
    """
    Thread function to be run by the new thread.
    :param monitor: BasicMonitor - an instance of sub-class of BasicMonitor 
    """
    # start the monitor
    monitor.start()


# create monitor instance of your own class that implements BasicMonitor
regular_monitor = MyRegularOwnMonitor(data={"some": "data"})

# create thread with start-up function and start it
t = threading.Thread(target=start_monitor_thread, args=(regular_monitor, ), daemon=True)
t.start()

# in a separate piece of code (e.g. REST handler or timer) you can stop the monitor instance
regular_monitor.stop()

Stopping a monitor doesn't interrupt the current thread. If the monitor is for example in a wait period and you send the stop signal, the thread will still run until the wait period passes.

In an API scenario, I recommend using a dict or list to cache monitors and retrieve them via the API using the to_json() method for identification. This then allows you to signal starting / stopping of monitors by providing the monitor ID and lookup the monitor instance in the monitor cache.

BasicMonitor Methods

  • start() - starts the monitor
  • stop() - stops the monitor
  • to_json() - returns a dictionary with basic monitor technical information (id, state, wait behaviour, etc)
  • wait_till_midnight() - waits till the next midnight in your machines time zone
  • wait(exec_duration=0) - waits for the time specified in the constructor and in case of run_interval=True for the optional exec_duration, if provided.

ConstantListing

Managing constants is good practice for avoiding typos. Imagine the following class:

class Tags:
    GEO = "GEO"
    EQUIPMENT = "EQUIPMENT"

This allows you to just do: Tags.GEO allowing you to use your IDEs auto-complete, avoiding typos. But if you want to programmatically get all possible values for Tags, you can use pbu's ConstantListing class:

from pbu import ConstantListing

class Tags(ConstantListing):
    GEO = "GEO"
    EQUIPMENT = "EQUIPMENT"

list_of_values = Tags().get_all()  # will return ['GEO', 'EQUIPMENT']

PerformanceLogger

This utility class allows to print out or log runtime performance expressed as time delta between a start time and an end time.

Basic usage:

from pbu import PerformanceLogger

perf = PerformanceLogger()
perf.start()  # this is optional and will reset the start-time
# do something useful...
perf.checkpoint(message="Step 1")  # will print "Step 1 took <timedelta>
# some some more useful stuff...
perf.finish(message="Something useful")  # will print out the whole duration from start to finish

You can omit the message of a checkpoint call if you don't need an output for an operation, but want to print out the duration of the step that follows.

You can also use a Python Logger object (or pbu.Logger) instead of the message being printed out onto the console.

from pbu import Logger, PerformanceLogger

logger = Logger("my-logger-name")
perf = PerformanceLogger()
# do something...
perf.checkpoint()  # next output will print the duration between this point and the next checkpoint call
# do some more stuff...
perf.checkpoint(message="Some More Stuff", logger=logger)
# and even more ...
perf.finish(message="Total operation", logger=logger)

Methods

  • start() - will reset the start time of the performance logger
  • checkpoint(message=None, logger=None) - creates a new checkpoint and optionally logs a message
  • finish(message=None, logger=None) - prints out the total runtime since start() was called or the class was initialised

Functions

list_to_json

from pbu import list_to_json

# assuming we have `my_store` as an instance of MongoDB store or MySQL store, you can:
list_of_dictionaries = list_to_json(item_list=my_store.get_all())  # output is a list of dictionaries

This function operates on lists of objects inheriting from AbstractMongoDocument or AbstractMysqlDocument and converts them into dictionaries using the to_json() method of any object passed into the function. Objects passed into the function require the to_json() method and need to return the dictionary representation of the object. This function is just a mapping shortcut.

default_options

from pbu import default_options

DEFAULTS = {
    "a": 1,
    "b": 2,
    "c": 3,
}

result = default_options(default=DEFAULTS, override={"b": 4, "d": 5})
# result is: {"a": 1, "b": 4, "c": 3, "d": 5}

If you want to avoid additional keys other than the keys in DEFAULTS, you can provide a third argument:

from pbu import default_options

DEFAULTS = {
    "a": 1,
    "b": 2,
}

result = default_options(default=DEFAULTS, override={"b": 4, "d": 5}, allow_unknown_keys=False)
# result is: {"a": 1, "b": 4}

default_value

from pbu import default_value

result = default_value(value=None, fallback=5)  # None is by default disallowed
# result is 5

result = default_value(value=0, fallback=5, disallowed=[None, 0])  # either 0 or None would return the fallback
# result is 5

result = default_value(0, 5)  # value will be used, as it doesn't match None
# result is 0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pbu-0.7.1.tar.gz (33.2 kB view hashes)

Uploaded Source

Built Distribution

pbu-0.7.1-py3-none-any.whl (33.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page