Rasterize point cloud data
Project description
PC Rasterize: Rasterize Point Clouds in Parallel
How to use:
import pc_rasterize as pcr
import glob
files = sorted(glob.glob("../data/points/*.laz"))
# Create a GeoBox grid specification with a 100m buffer around data
geobox = pcr.build_geobox(files, resolution=0.50, crs="5070", buffer=100)
# Build a lazy CHM raster
chm = pcr.rasterize(
files,
geobox,
cell_func="max",
# Set custom dask chunk-size
chunksize=(500, 500),
nodata=np.nan,
# Filter out points over 100m
pdal_filters=[
{
"type": "filters.expression",
"expression": "Z < 100"
}
],
)
Saving with default dask scheduling:
# Use rioxarray to save to disk
chm.rio.to_raster("points_chm.tiff", tiled=True)
Saving with dask's more advanced scheduling:
Dask's more advanced 'distributed' scheduling also provides a dashboard at http://localhost:8787/status for viewing progress in your browser.
from dask.distributed import Client, LocalCluster, Lock
with LocalCluster() as cluster, Client(cluster) as client:
chm.rio.to_raster("points_chm.tiff", tiled=True, lock=Lock("rio"))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pc_rasterize-0.1.0.tar.gz
(8.8 kB
view details)
Built Distribution
File details
Details for the file pc_rasterize-0.1.0.tar.gz
.
File metadata
- Download URL: pc_rasterize-0.1.0.tar.gz
- Upload date:
- Size: 8.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0abbf56c98918d968d1f69853f30c07500bfa74308e820bc8019099bad8a1221 |
|
MD5 | edba70803a4560c2849e48e99fbe8c19 |
|
BLAKE2b-256 | 5609f50fff1bd67f1c37b8496b61d7469abcdeca874fad3908d984e189dda9b2 |
File details
Details for the file pc_rasterize-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: pc_rasterize-0.1.0-py3-none-any.whl
- Upload date:
- Size: 8.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c2c16e0199d56cf9b84af346e109d5048e75ff3f90847f2641fcb986346bd1d2 |
|
MD5 | d93db84c47f92570e23d30d6ba453a2e |
|
BLAKE2b-256 | 5e12764c9e3bce8b2431b9fcbfad5a1cb95ce0ab243ded2bbbb30923de4c333a |