Skip to main content

Reinforcement learning suite of process control problems.

Project description


Reinforcement learning environments for process control

Quick start ⚡

Setup a CSTR environment with a setpoint change

import pcgym

# Simulation variables
nsteps = 100
T = 25

# Setpoint
SP = {'Ca': [0.85 for i in range(int(nsteps/2))] + [0.9 for i in range(int(nsteps/2))]} 

# Action and observation Space
action_space = {'low': np.array([295]), 'high': np.array([302])}
observation_space = {'low': np.array([0.7,300,0.8]),'high': np.array([1,350,0.9])}

# Construct the environment parameter dictionary
env_params = {
    'N': nsteps, # Number of time steps
    'tsim':T, # Simulation Time
    'SP' :SP, 
    'o_space' : observation_space, 
    'a_space' : action_space, 
    'x0': np.array([0.8, 330, 0.8]), # Initial conditions [Ca, T, Ca_SP]
    'model': 'cstr_ode', # Select the model
}

# Create environment
env = pcgym.make_env(env_params)

# Reset the environment
obs, state = env.reset()

# Sample a random action
action = env.action_space.sample()

# Perform a step in the environment
obs, rew, done, term, info = env.step(action)

Documentation

You can read the full documentation here!

Installation ⏳

The latest pc-gym version can be installed from PyPI:

pip install pcgym

Examples

TODO: Link example notebooks here

Implemented Process Control Environments 🎛️

Environment Reference Source Documentation
CSTR Hedengren, 2022 Source
First Order Sytem N/A Source
Multistage Extraction Column Ingham et al, 2007 (pg 471) Source
Nonsmooth Control Lim,1969 Source

Citing pc-gym

If you use pc-gym in your research, please cite using the following

@software{pcgym2024,
  author = {Max Bloor and and Jose Neto and Ilya Sandoval and Max Mowbray and Akhil Ahmed and Mehmet Mercangoz and Calvin Tsay and Antonio Del Rio-Chanona},
  title = {{pc-gym}: Reinforcement Learning Envionments for Process Control},
  url = {https://github.com/MaximilianB2/pc-gym},
  version = {0.0.4},
  year = {2024},
}

Other Great Gyms 🔍

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pcgym-0.1.4.tar.gz (20.6 kB view details)

Uploaded Source

Built Distribution

pcgym-0.1.4-py3-none-any.whl (20.8 kB view details)

Uploaded Python 3

File details

Details for the file pcgym-0.1.4.tar.gz.

File metadata

  • Download URL: pcgym-0.1.4.tar.gz
  • Upload date:
  • Size: 20.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for pcgym-0.1.4.tar.gz
Algorithm Hash digest
SHA256 0066864efc3f9762ba1a8ffd3af6437299507ae599a2664617cea8e261ff72c5
MD5 49190cfecda582946908e7ef3875f17b
BLAKE2b-256 f8408e4024dfec1264811a65d60ed0215220e09b443845b348a3c7a1ec58eda0

See more details on using hashes here.

File details

Details for the file pcgym-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: pcgym-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 20.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for pcgym-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 4d300f2eb54725d73f7673b4e97f2429d9f99e0ce6680e651cf59e7dd4b11ee7
MD5 53b05c127b4cd086b0d0d09d3d8092b2
BLAKE2b-256 37a7d24610781cedb42aa74662649ccd59b833a86bfbff855ae58599d0800319

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page